Allen, M. J., Schroeder, D. C., Donkin, A., Crawfurd, K. J. & Wilson, W. H. Genome comparison of two coccolithoviruses. Virol. J. 3, 15 (2006).

Gerringa, L. J. A., de Baar, H. J. W. & Timmermans, K. R. A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar. Chem. 68, 335–346 (2000).

Schatz, D. et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. New Phytol. 204, 854–863 (2014).

Liu, R., Liu, Y., Chen, Y., Zhan, Y. & Zeng, Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc. Natl Acad. Sci. USA 116, 14077–14082 (2019). This paper shows distinct diel-dependent life history traits in three Prochlorococcus phages, and that rhythmic phage transcription is linked to the photosynthetic activity of the host.

Deng, L. et al. Grazing of heterotrophic flagellates on viruses is driven by feeding behaviour. Environ. Microbiol. Rep. 6, 325–330 (2014).

Mahmoudabadi, G., Milo, R. & Phillips, R. The energetic cost of building a virus. Proc. Natl Acad. Sci. USA 114, E4324–E4333 (2017).

Brown, C. M. & Bidle, K. D. Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens. Virology 466–467, 71–81 (2014).

Evans, C. & Wilson, W. H. Preferential grazing of Oxyrrhis marina on virus-infected Emiliania huxleyi. Limnol. Oceanogr. 53, 2035–2040 (2008).

Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

Photosynthetic pigments found in cyanobacteria and the chloroplasts of red algae and glaucophytes that aid in absorption of light energy, particularly at wavelengths that are not well absorbed by chlorophylls or carotenoids.

Monier, A. et al. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral–host gene exchanges. Environ. Microbiol. 14, 162–176 (2012).

Micro Geotechnical, an in-situ testing company, needed to accurately monitor the bearing capacity of the ground under a given load, to determine the safe ...

Nissimov, J. I. et al. Dynamics of transparent exopolymer particle (TEP) production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. Environ. Microbiol. 20, 2880–2897 (2018).

Your complete source for replacement diagnostic imaging parts. With 20000 different parts in-stock and ready to ship, we can meet all your diagnostic and ...

Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

Wilson, W. H. et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309, 1090–1092 (2005).

Bonnain, C., Breitbart, M. & Buck, K. N. The ferrojan horse hypothesis: iron–virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).

Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

Zimmerman, A.E., Howard-Varona, C., Needham, D.M. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 18, 21–34 (2020). https://doi.org/10.1038/s41579-019-0270-x

Middelboe, M. & Jørgensen, N. O. G. Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J. Mar. Biol. Assoc. UK 86, 605–612 (2006).

Vermont, A. I. et al. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. J. Plankton Res. 38, 1194–1205 (2016).

Bachy, C. et al. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ. Microbiol. 20, 2898–2912 (2018).

Ou, T., Gao, X. C., Li, S. H. & Zhang, Q. Y. Genome analysis and gene nblA identification of Microcystis aeruginosa myovirus (MaMV-DC) reveal the evidence for horizontal gene transfer events between cyanomyovirus and host. J. Gen. Virol. 96, 3681–3697 (2015).

Slagter, H. A., Gerringa, L. J. A. & Brussaard, C. P. D. Phytoplankton virus production negatively affected by iron limitation. Front. Mar. Sci. 3, 156 (2016).

Bertilsson, S., Berglund, O., Karl, D. M. & Chisholm, S. W. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48, 1721–1731 (2003).

Clokie, M. R. J. et al. Transcription of a ‘photosynthetic’ T4-type phage during infection of a marine cyanobacterium. Environ. Microbiol. 8, 827–835 (2006).

Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2018).

Waters, R. E. & Chan, A. T. Micromonas pusilla virus: the virus growth cycle and associated physiological events within the host cells; host range mutation. J. Gen. Virol. 63, 199–206 (1982).

Adolph, K. W. & Haselkorn, R. Photosynthesis and the development of blue–green algal virus N-1. Virology 47, 370–374 (1972).

Puxty, R. J., Millard, A. D., Evans, D. J. & Scanlan, D. J. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr. Biol. 26, 1585–1589 (2016).

Crummett, L. T., Puxty, R. J., Weihe, C., Marston, M. F. & Martiny, J. B. H. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499, 219–229 (2016).

New England OB-GYN Associates's board-certified clinicians have offered comprehensive care to the Greater Boston area for more than 50 years.

Kozloff, L. M. & Putnam, F. W. Biochemical studies of virus reproduction: III. The origin of virus phosphorus in the Escherichia coli T6 bacteriophage system. J. Biol. Chem. 182, 229–242 (1950).

Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31, 161–168 (2016).

Middelboe, M., Jørgensen, N. O. G. & Kroer, N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62, 1991–1997 (1996).

Wikner, J., Vallino, J. J., Steward, G. F., Smith, D. C. & Azam, F. Nucleic acids from the host bacterium as a major source of nucleotides for three marine bacteriophages. FEMS Microbiol. Ecol. 12, 237–248 (1993).

Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

Malits, A., Christaki, U., Obernosterer, I. & Weinbauer, M. G. Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the kerguelen plateau. Biogeosciences 11, 6841–6853 (2014).

Sharma, A. K., Spudich, J. L. & Doolittle, W. F. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 14, 463–469 (2006).

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res. 244, 181–193 (2018).

Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sanudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).

Edwards, K. F. & Steward, G. F. Host traits drive viral life histories across phytoplankton viruses. Am. Nat. 191, 566–581 (2018).

Thamatrakoln, K. et al. Light regulation of coccolithophore host–virus interactions. New Phytol. 221, 1289–1302 (2019). Based on photophysiology and biochemical measurements during E. huxleyi viral infection, this study suggests that viral replication is controlled by a light-dependent trade-off between host nucleotide recycling and de novo synthesis.

Stent, G. S. & Maaløe, O. Radioactive phosphorus tracer studies on the reproduction of T4 bacteriophage. Biochim. Biophys. Acta 10, 55–69 (1953).

Kimura, S. et al. Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl. Environ. Microbiol. 78, 5805–5811 (2012).

Kao, C. C., Green, S., Stein, B. & Golden, S. S. Diel infection of a cyanobacterium by a contractile bacteriophage. Appl. Environ. Microbiol. 71, 4276–4279 (2005).

Maat, D. S., Crawfurd, K. J., Timmermans, K. R. & Brussaard, C. P. D. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl. Environ. Microbiol. 80, 3119–3127 (2014).

Obeng, N., Pratama, A. A. & Elsas, J. D. van. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).

Ignacio-Espinoza, J. C. & Sullivan, M. B. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ. Microbiol. 14, 2113–2126 (2012).

Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA 110, 10800–10805 (2013).

Monier, A. et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc. Natl Acad. Sci. USA 114, E7489–E7498 (2017). This study reports the first nitrogen transport gene in an algal virus isolate and shows that it enables uptake of ammonium as well as organic nitrogen substrates.

Jia, Y., Shan, J., Millard, A., Clokie, M. R. J. & Mann, N. H. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol. Lett. 310, 120–126 (2010).

Bremer, H. et al. Escherichia Coli and Salmonella: Cellular and Molecular Biology 2nd edn Vol. 2 (eds Neidhardt, F. C. et al.) 1553–1569 (ASM Press, 1996).

Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0502-x (2019). Using both cultured isolates and field observations, this study shows that silicon stress can accelerate virus-induced mortality of marine diatoms, potentially promoting nutrient recycling via the viral shunt.

Deeg, C. M., Chow, C. E. T. & Suttle, C. A. The kinetoplastid-infecting Bodo saltans virus (Bsv), a window into the most abundant giant viruses in the sea. eLife 7, e33014 (2018).

Motegi, C. et al. Viral control of bacterial growth efficiency in marine pelagic environments. Limnol. Oceanogr. 54, 1901–1910 (2009).

Ledermann, B. et al. Evolution and molecular mechanism of four-electron reducing ferredoxin-dependent bilin reductases from oceanic phages. FEBS J. 285, 339–356 (2018).

Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26, 2689–2707 (2014).

Find information about your next step in postgraduate professional medical training.

Hadas, H., Einav, M., Fishov, I. & Zaritsky, A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185 (1997).

Claverie, J.-M. & Abergel, C. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses 10, 506 (2018).

Luo, E., Aylward, F. O., Mende, D. R. & Delong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903–e01917 (2017).

Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, GB4028 (2004).

Guo, J. et al. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation. Nat. Microbiol. 3, 781–790 (2018).

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model. Dev. 8, 2465–2513 (2015).

Maat, D. S., de Blok, R. & Brussaard, C. P. D. Combined phosphorus limitation and light stress prevent viral proliferation in the phytoplankton species Phaeocystis globosa, but not in Micromonas pusilla. Front. Mar. Sci. 3, 160 (2016).

Reistetter, E. N. et al. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II: gene expression. Environ. Microbiol. 15, 2129–2143 (2013).

Zimmerman, A. E. et al. Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environ. Microbiol. 21, 2148–2170 (2019).

Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).

Johns, C. T. et al. The mutual interplay between calcification and coccolithovirus infection. Environ. Microbiol. 21, 1896–1915 (2019).

Puxty, R. J., Millard, A. D., Evans, D. J. & Scanlan, D. J. Shedding new light on viral photosynthesis. Photosynth. Res. 126, 71–97 (2015).

Tetu, S. G. et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3, 835–849 (2009).

Gasper, R. et al. Distinct features of cyanophage-encoded T-type phycobiliprotein lyase ΦCpeT: the role of auxiliary metabolic genes. J. Biol. Chem. 292, 3089–3098 (2017).

Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in Archaea and Bacteria. Annu. Rev. Microbiol. 71, 233–261 (2017).

Ledermann, B., Béjà, O. & Frankenberg-Dinkel, N. New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ. Microbiol. 18, 4337–4347 (2016).

Mackenzie, J. J. & Haselkorn, R. Photosynthesis and the development of blue–green algal virus SM-1. Virology 49, 517–521 (1972).

Abedon, S. T. Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6, e1220348 (2016).

Sañudo-Wilhelmy, S. A. et al. Multiple B-vitamin depletion in large areas of the coastal ocean. Proc. Natl Acad. Sci. USA 109, 14041–14045 (2012).

You, L., Suthers, P. F. & Yin, J. Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J. Bacteriol. 184, 1888–1894 (2002).

Moniruzzaman, M., Gann, E. R. & Wilhelm, S. W. Infection by a giant virus (AaV) induces widespread physiological reprogramming in Aureococcus anophagefferens CCMP1984-A harmful bloom algae. Front. Microbiol. 9, 752 (2018).

Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011). This paper shows that cyanophages encode a Calvin cycle inhibitor and transaldolase with enzymological properties different from their host homologues, demonstrating the importance of the pentose phosphate pathway during infection.

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

Kelly, L., Ding, H., Huang, K. H., Osburne, M. S. & Chisholm, S. W. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 7, 1827–1841 (2013).

Wilson, W. H., Carr, N. G. & Mann, N. H. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J. Phycol. 32, 506–516 (1996).

Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).

Sieradzki, E. T., Ignacio-Espinoza, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A. Dynamic marine viral infections and major contribution to photosynthetic processes shown by regional and seasonal picoplankton metatranscriptomes. Nat. Commun. 10, 1169 (2019).

Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88–96 (2016).

López-Pérez, M., Haro-Moreno, J. M., de la Torre, J. R. & Rodriguez-Valera, F. Novel caudovirales associated with Marine Group I Thaumarchaeota assembled from metagenomes. Environ. Microbiol. 21, 1980–1988 (2019).

This work was supported by the Gordon & Betty Moore Foundation Marine Microbiology Initiative (Award 3305). Additional support was provided by the National Science Foundation Division of Ocean Sciences (NSF-OCE) (Awards 1536989 and 1829831 to M.B.S.), the Simons Foundation (Awards 32910 to S.J. and 402971 to J.R.W.) and the Gordon & Betty Moore Foundation (Awards 3788 to A.Z.W. and 3790 to M.B.S.).

Van Etten, J. L., Burbank, D. E., Xia, Y. & Meints, R. H. Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae. Virology 126, 117–125 (1983).

Nadel, O. et al. Uncultured marine cyanophages encode for active NblA, phycobilisome proteolysis adaptor protein. Preprint at bioRxiv https://doi.org/10.1101/494369 (2018).

Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes. Virology 518, 423–433 (2018).

Heal, K. R. et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc. Natl Acad. Sci. USA 114, 364–369 (2017).

Ginzburg, D., Padan, E. & Shilo, M. Effect of cyanophage infection on CO2 photoassimilation in Plectonema boryanum. J. Virol. 2, 695–701 (1968).

Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008).

Shelford, E. J., Middelboe, M., Møller, E. F. & Suttle, C. A. Virus-driven nitrogen cycling enhances phytoplankton growth. Aquat. Microb. Ecol. 66, 41–46 (2012).

Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).

Mai-Prochnow, A. et al. ‘Big things in small packages: the genetics of filamentous phage and effects on fitness of their host’. FEMS Microbiol. Rev. 39, 465–487 (2015).

Gao, E.-B., Gui, J.-F. & Zhang, Q.-Y. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J. Virol. 86, 236–245 (2012).

Talmy, D. et al. An empirical model of carbon flow through marine viruses and microzooplankton grazers. Environ. Microbiol. 21, 2171–2181 (2019). Using an empirically parameterized model constrained by estimates of prey, predator and viral life history traits, this study calculates carbon flows from primary producers to viruses, grazers and lysates in a marine ecosystem.

Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019). This study presents the first reported isolation of viruses infecting widespread marine archaea, demonstrating the continuation of ammonium oxidation activity during infection and a chronic infection strategy distinct from that of the lytic bacteriophage.

Hellweger, F. L. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 11, 1386–1394 (2009).

Mayer, J. A. & Taylor, F. J. R. A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281, 299–301 (1979).

Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

Rosenwasser, S., Ziv, C., Creveld, S. G. van. & Vardi, A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).

Bratbak, G., Jacobsen, A., Heldal, M., Nagasaki, K. & Thingstad, T. F. Virus production in Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquat. Microb. Ecol. 16, 1–9 (1998).

10 Oct 2024 — Find a 2022 Seadoo Sea Doo Spark for sale near you. Browse the most popular John Deere models at the best prices on MachineFinder.

Waldbauer, J. R. et al. Nitrogen sourcing during viral infection of marine cyanobacteria. Proc. Natl Acad. Sci. USA 116, 15590–15595 (2019). This proteomics study quantitatively tracks nitrogen incorporation during phage infection of Synechococcus, showing that substantial amounts of phage protein nitrogen are acquired from the environment after infection begins and incorporated via de novo amino acid synthesis.

Kolody, B. C. et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 13, 2817–2833 (2019).

3 days ago — ... policies/provisional-data-statement for more information. # # File ... 339639 00300 Dissolved oxygen, water, unfiltered, milligrams per ...

Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A. & Wilhelm, S. W. Viral release of iron and its bioavailability to marine plankton. Limnol. Oceanogr. 49, 1734–1741 (2004).

Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).

Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).

Suttle, C. A. & Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 3721–3729 (1992).

Thompson, L. R., Zeng, Q. & Chisholm, S. W. Gene expression patterns during light and dark infection of Prochlorococcus by cyanophage. PLOS ONE 11, e0165375 (2016).

Hunter, J. E., Frada, M. J., Fredricks, H. F., Vardi, A. & Van Mooy, B. A. S. Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Front. Mar. Sci. 2, 81 (2015).

Bragg, J. G. & Chisholm, S. W. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLOS ONE 3, e3550 (2008).

16 Sept 2020 — 399-35 (COR). Please ensure that the subject bill is referred to the Committee on Health, Tourism, Historic. Preservation, Land and Justice ...

Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).

Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl Acad. Sci. USA 113, E1907–E1916 (2016).

Condition: New ; Make & Model. UNSPSC, 40142000. Manufacturer Part Number, 2517200 ; UNSPSC, 40142000 ; Manufacturer Part Number, 2517200 ; Material/Color/Finish ...

Nature Reviews Microbiology thanks K. Bidle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57, 725–749 (1993).

Frada, M. J. et al. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Curr. Biol. 24, 2592–2597 (2014).

The uppermost layer of water in a lake or ocean characterized by enough sunlight to support photosynthetic carbon fixation.

Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018). This field study marshals an array of evidence to provide some of the first direct measurements of the effects of viral infection on large-scale carbon export in a natural marine ecosystem.

Lin, X., Ding, H. & Zeng, Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ. Microbiol. 18, 450–460 (2016).

Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).

Moniruzzaman, M. et al. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host–virus coevolution. Virology 466–467, 60–70 (2014).

Stock, C. A., Dunne, J. P. & John, J. G. Global-scale carbon and energy flows through the marine planktonic food web: an analysis with a coupled physical–biological model. Prog. Oceanogr. 120, 1–28 (2014).

Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).

Mistry, B. A., D’Orsogna, M. R. & Chou, T. The effects of statistical multiplicity of infection on virus quantification and infectivity assays. Biophys. J. 114, 2974–2985 (2018).

Nissimov, J. I. et al. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ. Microbiol. 21, 2182–2197 (2019).

Hyman, P. & Abedon, S. T. in Bacteriophages. Methods and Protocols, Volume 1: Isolation, Characterization, and Interaction (eds Clokie, M. R. J. & Kropinski, A. M.) 175–202 (Humana Press, 2009).

Thomas, R. et al. Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ. Microbiol. 13, 1412–1420 (2011).

A membrane complex of several proteins, pigments and other cofactors that performs the principal energy conversion reactions of photosynthesis, capturing light energy and converting it into redox potential energy for ATP synthesis and reducing power for reduction of CO2; also known as the photosynthetic reaction centre.

Allen, M. J. et al. Locus-specific gene expression pattern suggests a unique propagation strategy for a giant algal virus. J. Virol. 80, 7699–7705 (2006).

Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect southern ocean microbial dynamics. ISME J. 10, 437–449 (2016).

Brüssow, H., Canchaya, C. & Hardt, W.-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

Cheng, Y. S., Labavitch, J. & VanderGheynst, J. S. Organic and inorganic nitrogen impact Chlorella variabilis productivity and host quality for viral production and cell lysis. Appl. Biochem. Biotechnol. 176, 467–479 (2015).

Vardi, A. et al. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl Acad. Sci. USA 109, 19327–19332 (2012).

Baudoux, A.-C. & Brussaard, C. P. D. Influence of irradiance on virus–algal host interactions. J. Phycol. 44, 902–908 (2008).

Falkowski, P. G., Fenchel, T. & DeLong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

Ma, X., Coleman, M. L. & Waldbauer, J. R. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria. Environ. Microbiol. 20, 3001–3011 (2018).

Dammeyer, T., Bagby, S. C., Sullivan, M. B., Chisholm, S. W. & Frankenberg-Dinkel, N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr. Biol. 18, 442–448 (2008).

Ecosystems are controlled by ‘bottom-up’ (resources) and ‘top-down’ (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.

Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla, E., Maat, D. S. & Brussaard, C. P. D. Influence of irradiance and temperature on the virus MpoV-45T infecting the arctic picophytoplankter Micromonas polaris. Viruses 10, 676 (2018).

Fridman, S. et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat. Microbiol. 2, 1350–1357 (2017).

Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742–1754 (2016).

Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7, 1391 (2016).

Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).

Clasen, J. L. & Elser, J. J. The effect of host Chlorella NC64A carbon:phosphorus ratio on the production of Paramecium bursaria Chlorella Virus-1. Freshw. Biol. 52, 112–122 (2007).

Reimers, A.-M., Knoop, H., Bockmayr, A. & Steuer, R. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc. Natl Acad. Sci. USA 114, E6457–E6465 (2017).

Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

Gonzalez, J. M. & Suttle, C. A. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94, 1–10 (1993).

Mackinder, L. C. M. et al. A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J. Gen. Virol. 90, 2306–2316 (2009).

Brown, C. M., Campbell, D. A. & Lawrence, J. E. Resource dynamics during infection of Micromonas pusilla by virus MpV-Sp1. Environ. Microbiol. 9, 2720–2727 (2007).

Coy, S., Gann, E., Pound, H., Short, S. & Wilhelm, S. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10, 487 (2018).

Yamada, Y., Tomaru, Y., Fukuda, H. & Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 5, 167 (2018).

Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

Puxty, R. J., Evans, D. J., Millard, A. D. & Scanlan, D. J. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 12, 1273–1286 (2018). This study demonstrates that cyanophages modulate expression of photosynthesis-related accessory metabolic genes in response to light intensity, suggesting energy limitation of phage productivity and a basis for diel and seasonal patterns of virus-induced mortality.

EL58. Top Engine Steady - 1275cc by Mini Sport. Be the first to review this product. Special Price £27.26 £22.72 Regular Price £30.73. In stock. SKU. EL58. Mini ...

Rosenwasser, S. et al. Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLOS Pathog. 15, e1007708 (2019).

Schieler, B. M. et al. Nitric oxide production and antioxidant function during viral infection of the coccolithophore Emiliania huxleyi. ISME J. 13, 1019–1031 (2019).

Shah, V., Chang, B. X. & Morris, R. M. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 11, 263–271 (2017).

Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).

Derelle, E. et al. Diversity of viruses infecting the green microalga Ostreococcus lucimarinus. J. Virol. 89, 5812–5821 (2015).

Maat, D. S. & Brussaard, C. P. D. Both phosphorus and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat. Microb. Ecol. 77, 87–97 (2016).

Moniruzzaman, M. et al. Virus–host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).

Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).

Kendrick, B. J. et al. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae). PLOS ONE 9, e112134 (2014).

Pasulka, A. L. et al. Interrogating marine virus–host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671–692 (2018).

Cseke, C. S. & Farkas, G. L. Effect of light on the attachment of cyanophage AS-1 to Anacystis nidulans. J. Bacteriol. 137, 667–669 (1979).

Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).

Nissimov, J. I., Napier, J. A., Allen, M. J. & Kimmance, S. A. Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environ. Microbiol. 18, 133–145 (2016).

Brown, C. M., Lawrence, J. E. & Campbell, D. A. Are phytoplankton population density maxima predictable through analysis of host and viral genomic DNA content? J. Mar. Biol. Assoc. UK 86, 491–498 (2006).

Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).

Mateus, M. D. Bridging the gap between knowing and modeling viruses in marine systems — an upcoming frontier. Front. Mar. Sci. 3, 284 (2017).

Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).

Morimoto, D., Kimura, S., Sako, Y. & Yoshida, T. Transcriptome analysis of a bloom-forming cyanobacterium Microcystis aeruginosa during Ma-LMM01 phage infection. Front. Microbiol. 9, 2 (2018).

Intergovernmental Panel on Climate Change. Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

Maat, D. S. et al. Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses 9, 134 (2017).

(TEP). A sticky, gel-like particle consisting predominantly of acidic polysaccharides that originate from microorganisms and can enhance the aggregation of non-sticky particles in marine and aquatic ecosystems.

Lønborg, C., Middelboe, M. & Brussaard, C. P. D. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240 (2013).

Dang, V. T., Howard-Varona, C., Schwenck, S. & Sullivan, M. B. Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. Environ. Microbiol. 17, 4659–4671 (2015).

Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).

Voltage Tester 2MM 1145 Mastercheck - High Quality Electrical Testers with protected circuit to guard against misuseFor more Electrical Equipment - View ...

Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).

Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014). This paper uses metabolomics to quantify redirection of metabolic fluxes during phage infection of a marine α-proteobacterium, and consequent compositional alteration of dissolved material released by lysis.

Lawrence, J. et al. Viruses on the menu: the appendicularian Oikopleura dioica efficiently removes viruses from seawater. Limnol. Oceanogr. 63, S244–S253 (2018).