Stripch new porn videos and avaadams, xxx2 - stripch
In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.
An adequate portrayal of the root canal anatomy by diagnostic imaging is a prerequisite for a successful diagnosis and therapy in endodontics. The introduction of dental cone beam computed tomography (CBCT) has considerably expanded the scope of imaging diagnostics. The aim of the following study was to evaluate the imaging of endodontic structures with CBCT. One hundred and twenty teeth were examined with a CBCT device (ProMax 3D). Subsequently, the findings of the three-dimensional images were evaluated and compared to those of dental radiographs and tangential section preparations of the examined teeth. Results with high prevalence, such as existing roots and root canals, as well as results with low prevalence, e.g., extremely fine anatomical structures of the endodontic tissue, could be visualized precisely by dental CBCT; side canals, ramifications, communications, pulp stones, and obliterations could also be detected. Additionally, the length of curved root canals could be determined accurately. Likewise, root fractures were visualized reliably with CBCT. However, carious lesions could not be diagnosed adequately, and the evaluation of fillings and prosthetic restorations was complicated due to scattered X-ray artifacts. CBCT datasets qualify to visualize and diagnose small anatomical structures of the endodontic tissue.
Periapical cemento-osseous dysplasia (PCOD) is a subtype of cemento-osseous dysplasia that usually occurs in middle-aged black women. This report described a case of a 45-year-old Iranian woman who was diagnosed with PCOD on the basis of cone beam computed tomographic (CBCT) findings. CBCT enabled detailed visualization of the bone changes. This report described the special radiographic characteristics of PCOD, including discontinuity of the lingual cortex on the CBCT sectional and three-dimensional images.
... 34 Education 1 2014-07-01 2014-07-01 false Age distinctions contained in ED's regulations. 110.17..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Standards for Determining Age Discrimination § 110.17 Age distinctions contained in ED...
Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery.
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3
Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with current European guidelines. The CBCT examinations were performed using similar equipment and standardized among clinics. After a thorough clinical examination, but before CBCT, the examiner made a preliminary therapy plan which was recorded. After the CBCT examination, the same examiner made a new therapy plan. Therapy plans both before and after the CBCT examination were plotted for 53 patients and 81 teeth. As four patients had incomplete protocols, they were not included in the final analysis. Results: 4% of the patients referred to endodontic clinics during the study period were examined with CBCT. The most frequent reason for referral to CBCT examination was to differentiate pathology from normal anatomy, this was the case in 24 patients (45% of the cases). The primary outcome was therapy plan changes that could be attributed to CBCT examination. There were changes in 28 patients (53%). Conclusions: CBCT has a significant impact on therapeutic decision efficacy in endodontics when used in concordance with the current European Commission guidelines. PMID:24766060
The objectives of this study were to evaluate the efficacy of additional cone beam computed tomography (CBCT) imaging on decreasing the risk of inferior alveolar nerve (IAN) injury during third molar removal in patients at high risk and to assess the surgical outcomes. The study sample included patients considered at high risk for IAN injury based on panoramic radiography (PAN) evaluation. The primary predictor was the type of imaging method (PAN only or with additional CBCT). The other variables were demographic and anatomical/radiographic factors. The primary outcome variable was IAN injury. The secondary outcome variables were the preoperative surgical plan and surgical results including IAN exposure and duration of surgery. The sample comprised 122 patients (139 teeth) aged 18-48 years. Postoperative temporary IAN injury was present in three (4.2%) cases in the CBCT group and 11 (16.4%) in the PAN group at 7 days after surgery. However, none of the patients had a permanent IAN injury at the 6-month follow-up. Additional CBCT imaging was not superior to PAN in reducing IAN injury after third molar surgery during long-term follow-up. Nonetheless, CBCT may decrease the prevalence of temporary IAN injury and improve the surgical outcomes in high-risk patients. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes tomore » the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and âground-truthâ onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and âground-truthâ onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the
Poster â Thur Eve â 10: Partial kV CBCT, complete kV CBCT and EPID in breast treatment: a dose comparison study for skin, breasts, heart and lungs
Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing.
New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy
TED-Ed lessons and TED-Ed clubs are two powerful educational tools that can be used in today's school classrooms in order to create an educational environment that is engaging for the students and favors their active participation, created and fostered by TED-Ed. TED-Ed is TED's educational initiative, committed to create lessons worth sharing and amplify the voices and ideas of teachers and students around the world. TED-Ed animated lessons are fully organized lessons structured around an animated video that introduces new topics to learners in an exciting, thought-provoking way. These lessons have been created as a result of the cooperation between expert educators and animators and have been uploaded at the TED-Ed platform (http://ed.ted.com). On the other hand, TED-Ed Clubs are also an interesting way to offer students the chance, the voice and the opportunity to express their thoughts, engage actively on these matters and connect with each other, both at a local, as well as at an international level (http://ed.ted.com/clubs). By developing new TED-Ed lessons or by customizing appropriately existing animated TED-Ed lessons (translating, modifying the questions asked, introducing new discussion topics), I have created and implemented in my student-centered, didactic approach, a series of TED-ED animated lessons directly connected with the Greek national science syllabus that were used to spark students curiosity and initiate a further analytical discussion or introduce other relevant educational activities (http://gvillias.wixsite.com/education). Furthermore, at my school, we established Varvakeio TED-Ed Club, an environment that supports and empowers our students to research, develop and disseminate their own personal ideas that worth spreading. During the year, our members were inspired by watching TED talks presented by experts on their field on various different areas, including social, economical, environmental and technological-scientific issues. Our aim
The aim of this study was to describe emergency department (ED) activities and staffing after the introduction of activity-based funding (ABF) to highlight the challenges of new funding arrangements and their implementation. A retrospective study of public hospital EDs in Queensland, Australia, was undertaken for 2013-2014. The ED and hospital characteristics are described to evaluate the alignment between activity and resourcing levels and their impact on performance. Twenty EDs participated (74% response rate). Weighted activity units (WAUs) and nursing staff varied based on hospital type and size. Larger hospital EDs had on average 9076 WAUs and 13 full time equivalent (FTE) nursing staff per 1000 WAUs; smaller EDs had on average 4587 WAUs and 10.3 FTE nursing staff per 1000 WAUs. Medical staff was relatively consistent (8.1-8.7 FTE per 1000 WAUs). The proportion of patients admitted, discharged, or transferred within 4 hours ranged from 73% to 79%. The ED medical and nursing staffing numbers did not correlate with the 4-hour performance. Substantial variation exists across Queensland EDs when resourcing service delivery in an activity-based funding environment. Historical inequity persists in the staffing profiles for regional and outer metropolitan departments. The lack of association between resourcing and performance metrics provides opportunity for further investigation of efficient models of care. Copyright © 2017 John Wiley & Sons, Ltd.
Patients with pathologic processes of the breast commonly present in the Emergency Department (ED). Familiarity with the imaging and management of the most common entities is essential for the radiologist. Additionally, it is important to understand the limitations of ED imaging and management in the acute setting and to recognize when referrals to a specialty breast center are necessary. The goal of this article is to review the clinical presentations, pathophysiology, imaging, and management of emergency breast cases and common breast pathology seen in the ED.
Purpose: This work reports the design, development, and first technical assessment of a cone-beam CT (CBCT) scanner developed specifically for imaging of acute intracranial hemorrhage (ICH) at the point of care, with target applications in diagnosis and monitoring of traumatic brain injury, stroke, and postsurgical hemorrhage. Methods: System design employed a task-based image quality model to quantify the influence of factors such as additive noise and high-gain (HG) detector readout on ICH detectability. Three bowtie filters with varying bare-beam attenuation strength and curvature were designed to enable HG readout without detector saturation, and a polyenergetic gain correction was developed tomore » minimize artifacts from bowtie flood-field calibration. Image reconstruction used an iterative penalized weighted least squares (PWLS) method with artifact correction including Monte Carlo scatter estimation, Joseph-Spital beam hardening correction, and spatiotemporal deconvolution of detector glare and lag. Radiation dose was characterized for half-scan and full-scan protocols at various kV, and imaging performance was assessed in a head phantom presenting simulated ICH with diameter ranging 2â12 mm. Results: The image quality model guided system design and was validated by measurements on a CBCT imaging bench. Compared to low-gain readout without a bowtie filter, the combination of HG readout and a modest bowtie improved the contrast-to-noise ratio (CNR per unit square-root dose) by 20% in the center of the image but degraded noise performance near the periphery (20% reduction in CNR). Low-frequency bowtie artifacts (â¼100 HU magnitude) were corrected by the polyenergetic gain correction. Image reconstructions on the prototype scanner demonstrate clear visibility of the smallest ICH insert (2 mm diameter) in both HG readout (with a bowtie) and dual-gain readout (without bowtie). Conclusion: Technical assessment of the prototype scanner suggests the
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 â 15%. PMID:16102175
Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patientsâ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764
We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g. data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility.
Self-Calibration of Cone-Beam CT Geometry Using 3D-2D Image Registration: Development and Application to Task-Based Imaging with a Robotic C-Arm
Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung
Purpose: Accurate deformable image registration (DIR) between CT and CBCT in H&N is challenging. In this study, we propose a practical hybrid method that uses not only the pixel intensities but also organ physical properties, structure volume of interest (VOI), and interactive local registrations. Methods: Five oropharyngeal cancer patients were selected retrospectively. For each patient, the planning CT was registered to the last fraction CBCT, where the anatomy difference was largest. A three step registration strategy was tested; Step1) DIR using pixel intensity only, Step2) DIR with additional use of structure VOI and rigidity penalty, and Step3) interactive local correction.more » For Step1, a public-domain open-source DIR algorithm was used (cubic B-spline, mutual information, steepest gradient optimization, and 4-level multi-resolution). For Step2, rigidity penalty was applied on bony anatomies and brain, and a structure VOI was used to handle the body truncation such as the shoulder cut-off on CBCT. Finally, in Step3, the registrations were reviewed on our in-house developed software and the erroneous areas were corrected via a local registration using level-set motion algorithm. Results: After Step1, there were considerable amount of registration errors in soft tissues and unrealistic stretching in the posterior to the neck and near the shoulder due to body truncation. The brain was also found deformed to a measurable extent near the superior border of CBCT. Such errors could be effectively removed by using a structure VOI and rigidity penalty. The rest of the local soft tissue error could be corrected using the interactive software tool. The estimated interactive correction time was approximately 5 minutes. Conclusion: The DIR using only the image pixel intensity was vulnerable to noise and body truncation. A corrective action was inevitable to achieve good quality of registrations. We found the proposed three-step hybrid method efficient and practical
Purpose: compressed sensing reconstruction using total variation (TV) tends to over-smooth the edge information by uniformly penalizing the image gradient. The goal of this study is to develop a novel prior contour based TV (PCTV) method to enhance the edge information in compressed sensing reconstruction for CBCT. Methods: the edge information is extracted from prior planning-CT via edge detection. Prior CT is first registered with on-board CBCT reconstructed with TV method through rigid or deformable registration. The edge contours in prior-CT is then mapped to CBCT and used as the weight map for TV regularization to enhance edge information in CBCT reconstruction. The PCTV method was evaluated using extended-cardiac-torso (XCAT) phantom, physical CatPhan phantom and brain patient data. Results were compared with both TV and edge preserving TV (EPTV) methods which are commonly used for limited projection CBCT reconstruction. Relative error was used to calculate pixel value difference and edge cross correlation was defined as the similarity of edge information between reconstructed images and ground truth in the quantitative evaluation. Results: compared to TV and EPTV, PCTV enhanced the edge information of bone, lung vessels and tumor in XCAT reconstruction and complex bony structures in brain patient CBCT. In XCAT study using 45 half-fan CBCT projections, compared with ground truth, relative errors were 1.5%, 0.7% and 0.3% and edge cross correlations were 0.66, 0.72 and 0.78 for TV, EPTV and PCTV, respectively. PCTV is more robust to the projection number reduction. Edge enhancement was reduced slightly with noisy projections but PCTV was still superior to other methods. PCTV can maintain resolution while reducing the noise in the low mAs CatPhan reconstruction. Low contrast edges were preserved better with PCTV compared with TV and EPTV. Conclusion: PCTV preserved edge information as well as reduced streak artifacts and noise in low dose CBCT reconstruction
The aim of this study was to evaluate the impact of limited volume CBCT upon diagnosis as part of endodontic management of posterior teeth. The null hypothesis that CBCT does not make any difference in endodontic diagnosis was tested. A single-centre "before-after" study was conducted in a secondary healthcare establishment. Eligible patients were all adults aged 18 years or over who were referred to a specialist endodontic unit. Further inclusion criteria were that the cases were either re-treatment or de novo root canal treatment where the anatomy was judged to be complex. Exclusion criteria included vulnerable groups and de novo endodontic treatment with uncomplicated root canal anatomy. As well as a full history and clinical examination, a high quality colour photographic intraoral image, two paralleling technique periapical radiographs and limited volume CBCT examination were carried out for each patient. All components, except the CBCT dataset, were combined into a Powerpoint presentation and assessed by 4 observers. A questionnaire was designed for the observers as part of the study. CBCT information only changed the radiological findings and the final diagnosis in a minority of cases. There was no clear evidence that CBCT increases the confidence of observers or that CBCT was helpful in making a diagnosis. Routine use of CBCT cannot not be justified on the basis of a change in diagnosis and carefully selected use is appropriate. CBCT is being increasingly used in the field of endodontics. The benefits gained from the use of CBCT must be carefully balanced against the increased radiation dosage. Determination of selection criteria for the use of CBCT in endodontics is, therefore, essential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva, Mauro Prado DA; Matsui, Christiano; Kim, Daniel Dongiou; Vieira, Joaquim Edson; Malheiros, Carlos Alberto; Mathias, Ligia Andrade Silva Telles
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
There have been limited multiregional studies in Asia examining the parameters of men's general and sexual health and quality of life in the general population vs. those in clinical cohorts of patients with erectile dysfunction (ED). The aims of the Asian Men's Attitudes to Life Events and Sexuality (Asian MALES) study were to investigate the prevalence of ED, associated health conditions, and ED treatment-seeking patterns in the general male population in five regions of Asia (China, Japan, Korea, Malaysia, and Taiwan). Standardized questionnaire previously used in a similar multiregional study and modified to ensure culturally appropriate content for Asia. Phase I of the study involved 10,934 adult men, aged 20-75 years, who were interviewed using the standardized questionnaire. Phase II of the study involved men with self-reported ED recruited from Phase I and via physician referral, invitations in general practitioner offices, and street interception (total Phase II sample, N = 1,209). The overall prevalence of self-reported ED in the Phase I study population was 6.4%. ED prevalence varied by region and significantly increased with age (P < 0.01). Men with ED reported significantly greater rates of comorbid illness (P < 0.0001) and a reduced quality of life (P = 0.0001), compared with men without ED. Phase II of the study revealed that fewer than half of men with self-reported ED had sought treatment for their problem. Men were more likely to seek help for erection difficulties from Western doctors than from traditional medicine practitioners (P = 0.0001). A man's partner/spouse was the most common influencer of treatment seeking in all regions except Malaysia. The findings confirm those of existing research on ED in both Asian and non-Asian males: ED is a prevalent condition; the prevalence of ED increases with age and is strongly associated with comorbid conditions; and the majority of men have never sought treatment for their condition. This study highlights
Use of edTPA for preservice teacher assessment is becoming increasingly common across the country, with some states, including Georgia, mandating the passing of the edTPA for initial teacher licensure. This state-wide study investigated whether edTPA as a new policy initiative was being integrated by the teacher education programs and faculty inâ¦
New materials and designs in complex 3D architectures in logic and memory devices have raised complexity in S/TEM metrology. In this paper, we report about a newly developed, automated, scanning transmission electron microscopy (STEM) based, energy dispersive X-ray spectroscopy (STEM-EDS) metrology method that addresses these challenges. Different methodologies toward repeatable and efficient, automated STEM-EDS metrology with high throughput are presented: we introduce the best known auto-EDS acquisition and quantification methods for robust and reliable metrology and present how electron exposure dose impacts the EDS metrology reproducibility, either due to poor signalto-noise ratio (SNR) at low dose or due to sample modifications at high dose conditions. Finally, we discuss the limitations of the STEM-EDS metrology technique and propose strategies to optimize the process both in terms of throughput and metrology reliability.
Evaluating the periapical status of teeth with irreversible pulpitis by using cone-beam computed tomography scanning and periapical radiographs.
Calibration of the LHAASO-KM2A electromagnetic particle detectors using charged particles within the extensive air showers
Recently, image-guided radiotherapy (IGRT) systems using kilovolt cone-beam computed tomography (kV-CBCT) images have become more common for highly accurate patient positioning in stereotactic lung body radiotherapy (SLBRT). However, current IGRT procedures are based on bone structures and subjective correction. Therefore, the aim of this study was to evaluate the proposed framework for automated estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT. Twenty clinical cases are considered, involving solid, pure ground-glass opacity (GGO), mixed GGO, solitary, and non-solitary tumor types. The proposed framework consists of four steps: (1) determination of a search region for tumor location detection in a kV-CBCT image; (2) extraction of a tumor template from a planning CT image; (3) preprocessing for tumor region enhancement (edge and tumor enhancement using a Sobel filter and a blob structure enhancement (BSE) filter, respectively); and (4) tumor location estimation based on a template-matching technique. The location errors in the original, edge-, and tumor-enhanced images were found to be 1.2 ± 0.7 mm, 4.2 ± 8.0 mm, and 2.7 ± 4.6 mm, respectively. The location errors in the original images of solid, pure GGO, mixed GGO, solitary, and non-solitary types of tumors were 1.2 ± 0.7 mm, 1.3 ± 0.9 mm, 0.4 ± 0.6 mm, 1.1 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. These results suggest that the proposed framework is robust as regards automatic estimation of several types of tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT.
Cone Beam Computed Tomography (CBCT) system is the most widely used imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric image of patient can be reconstructed to identify and correct position setup errors prior to the radiation treatment. This CBCT system can significantly improve precision of on-line setup errors of patient position and tumor target localization prior to the treatment. However, there are still a number of issues that needs to be investigated with CBCT system such as 1) progressively increasing defective pixels in imaging detectors by its frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) degradation of image quality due to patients' respiratory motion when CBCT is acquired and 4) unknown knowledge of certain anatomical features such as liver, due to lack of soft-tissue contrast which makes tumor motion verification challenging. In this dissertation, we explore on optimizing the use of cone beam computed tomography (CBCT) system under such circumstances. We begin by introducing general concept of IGRT. We then present the development of automated defective pixel detection algorithm for X-ray imagers that is used for CBCT imaging using wavelet analysis. We next investigate on developing fast and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient approaches that could reduce the degradation of CBCT images from respiratory motion. First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory signal extracted from fiducial markers implanted in liver. Second, novel motion-map constrained image reconstruction (MCIR) is proposed that allows reconstruction of high quality and high phase
Loss of Control Eating Disorder (LOC-ED) has been proposed as a diagnostic category for children 6-12years with binge-type eating. However, characteristics of youth with LOC-ED have not been examined. We tested the hypothesis that the proposed criteria for LOC-ED would identify children with greater adiposity, more disordered eating attitudes, and greater mood disturbance than those without LOC-ED. Participants were 251 youth (10.29years±1.54, 53.8% female, 57.8% White, 35.5% Black, 2.0% Asian, 4.8% Hispanic, 53.0% overweight). Youth were interviewed regarding eating attitudes and behaviors, completed questionnaires to assess general psychopathology, and underwent measurements of body fat mass. Using previously proposed criteria for LOC-ED, children were classified as LOC-ED (n=19), LOC in the absence of the full disorder (subLOC, n=33), and youth not reporting LOC (noLOC, n=199). LOC-ED youth had higher BMIz (p=0.001) and adiposity (p=0.003) and reported greater disordered eating concerns (p<0.001) compared to noLOC youth. Compared to subLOC youth, LOC-ED youth had non-significantly higher BMIz (p=0.11), and significantly higher adiposity (p=0.04) and disordered eating attitudes (p=0.02). SubLOC youth had greater disordered eating concerns (p<0.001) and BMIz (p=0.03) but did not differ in adiposity (p=0.33) compared to noLOC youth. These preliminary data suggest that LOC-ED youth are elevated on disordered eating cognitions and anthropometric measures compared to youth without LOC-ED. Longitudinal studies are needed to determine if those with LOC-ED are at particularly increased risk for progression of disordered eating and excess weight gain. Published by Elsevier Ltd.
In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.
System Model The Regional Energy Deployment System (ReEDS) model helps the U.S. Department of model. Visualize Future Capacity Expansion of Renewable Energy Watch this video of the ReEDS model audio. Model Documentation ReEDS Model Documentation: Version 2016 ReEDS Map with Numbered Regions
Radiographic signs of pathology determining removal of an impacted mandibular third molar assessed in a panoramic image or CBCT.
In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30âcm diameter and 51âcm length) and head-type (16âcm diameter and 33âcm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96âcGy for OBI and 0.83âcGy for XVI. The peripheral doses were 2.36-2.90âcGy for OBI and 0.83-1.06âcGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48âcGy for OBI and 0.21âcGy for XVI. The peripheral doses were 0.26-0.66âcGy for OBI and 0.16-0.30âcGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined
This article aims to discuss current evidence and recommendations for cone-beam computed tomography (CBCT) in Orthodontics. In comparison to conventional radiograph, CBCT has higher radiation doses and, for this reason, is not a standard method of diagnosis in Orthodontics. Routine use of CBCT in substitution to conventional radiograph is considered an unaccepted practice. CBCT should be indicated with criteria only after clinical examination has been performed and when the benefits for diagnosis and treatment planning exceed the risks of a greater radiation dose. It should be requested only when there is a potential to provide new information not demonstrated by conventional scans, when it modifies treatment plan or favors treatment execution. The most frequent indication of CBCT in Orthodontics, with some evidence on its clinical efficacy, includes retained/impacted permanent teeth; severe craniofacial anomalies; severe facial discrepancies with indication of orthodontic-surgical treatment; and bone irregularities or malformation of TMJ accompanied by signs and symptoms. In exceptional cases of adult patients when critical tooth movement are planned in regions with deficient buccolingual thickness of the alveolar ridge, CBCT can be indicated provided that there is a perspective of changes in orthodontic treatment planning.
Cone-beam CT (CBCT) images are routinely acquired to verify patient position in radiotherapy (RT), but are typically not calibrated in Hounsfield Units (HU) and feature non-uniformity due to X-ray scatter and detector persistence effects. This prevents direct use of CBCT for re-calculation of RT delivered dose. We previously developed a prior-image based correction method to restore HU values and improve uniformity of CBCT images. Here we validate the accuracy with which corrected CBCT can be used for dosimetric assessment of RT delivery, using CBCT images and RT plans for 45 patients including pelvis, lung and head sites. Dose distributions were calculated based on each patient's original RT plan and using CBCT image values for tissue heterogeneity correction. Clinically relevant dose metrics were calculated (e.g. median and minimum target dose, maximum organ at risk dose). Accuracy of CBCT based dose metrics was determined using an "override ratio" method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the image is assumed to be constant for each patient, allowing comparison to "gold standard" CT. For pelvis and head images the proportion of dose errors >2% was reduced from 40% to 1.3% after applying shading correction. For lung images the proportion of dose errors >3% was reduced from 66% to 2.2%. Application of shading correction to CBCT images greatly improves their utility for dosimetric assessment of RT delivery, allowing high confidence that CBCT dose calculations are accurate within 2-3%.
Cone Beam Computed Tomography (CBCT), a kind of face and neck exams can be opportunity to identify, as an incidental finding, calcifications of the carotid artery (CACA). Given the similarity of the CACA with calcification found in several x-ray exams, this work suggests that a similar technique designed to detect breast calcifications in mammography images could be applied to detect such calcifications in CBCT. The method used a 3D version of the calcification detection technique [1], based on a signal enhancement using a convolution with a 3D Laplacian of Gaussian (LoG) function followed by removing the high contrast bone structure from the image. Initial promising results show a 71% sensitivity with 0.48 false positive per exam.
Since its introduction into dentistry in 1998, CBCT has become increasingly utilized for orthodontic diagnosis, treatment planning and research. The utilization of CBCT for these purposes has been facilitated by the relative advantages of three-dimensional (3D) over two-dimensional radiography. Despite many suggested indications of CBCT, scientific evidence that its utilization improves diagnosis and treatment plans or outcomes has only recently begun to emerge for some of these applications. This article provides a comprehensive and current review of key studies on the applications of CBCT in orthodontic therapy and for research to decipher treatment outcomes and 3D craniofacial anatomy. The current diagnostic and treatment planning indications for CBCT include impacted teeth, cleft lip and palate and skeletal discrepancies requiring surgical intervention. The use of CBCT in these and other situations such as root resorption, supernumerary teeth, temporomandibular joint (TMJ) pathology, asymmetries and alveolar boundary conditions should be justified on the basis of the merits relative to risks of imaging. CBCT has also been used to assess 3D craniofacial anatomy in health and disease and of treatment outcomes including that of root morphology and angulation; alveolar boundary conditions; maxillary transverse dimensions and maxillary expansion; airway morphology, vertical malocclusion and obstructive sleep apnoea; TMJ morphology and pathology contributing to malocclusion; and temporary anchorage devices. Finally, this article utilizes findings of these studies and current voids in knowledge to provide ideas for future research that could be beneficial for further optimizing the use of CBCT in research and the clinical practice of orthodontics. PMID:25358833
Purpose: To develop a CBCT HU correction method using a patient specific HU to mass density conversion curve based on a novel image registration and organ mapping method for head-and-neck radiation therapy. Methods: There are three steps to generate a patient specific CBCT HU to mass density conversion curve. First, we developed a novel robust image registration method based on sparseness analysis to register the planning CT (PCT) and the CBCT. Second, a novel organ mapping method was developed to transfer the organs at risk (OAR) contours from the PCT to the CBCT and corresponding mean HU values of eachmore » OAR were measured in both the PCT and CBCT volumes. Third, a set of PCT and CBCT HU to mass density conversion curves were created based on the mean HU values of OARs and the corresponding mass density of the OAR in the PCT. Then, we compared our proposed conversion curve with the traditional Catphan phantom based CBCT HU to mass density calibration curve. Both curves were input into the treatment planning system (TPS) for dose calculation. Last, the PTV and OAR doses, DVH and dose distributions of CBCT plans are compared to the original treatment plan. Results: One head-and-neck cases which contained a pair of PCT and CBCT was used. The dose differences between the PCT and CBCT plans using the proposed method are â1.33% for the mean PTV, 0.06% for PTV D95%, and â0.56% for the left neck. The dose differences between plans of PCT and CBCT corrected using the CATPhan based method are â4.39% for mean PTV, 4.07% for PTV D95%, and â2.01% for the left neck. Conclusion: The proposed CBCT HU correction method achieves better agreement with the original treatment plan compared to the traditional CATPhan based calibration method.« less
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, âtime is brainâ in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a âone-stop-shopâ in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac
One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details
Traditionally, healing after surgical endodontic retreatment (SER); i.e. apicectomy with or without a retrograde filling, is assessed in periapical radiographs (PR). Recently, the use of cone beam CT (CBCT) has increased within endodontics. Generally, CBCT detects more periapical lesions than PR, but basic research on the true nature of these lesions is missing. The objective was to assess the diagnostic validity of PR and CBCT for determining inflammation in SER cases that were re-operated (SER-R) due to unsuccessful healing, using histology of the periapical lesion as reference for inflammation. Records from 149 patients, receiving SER 2004-10, were screened. In total 108 patients (119 teeth) were recalled for clinical follow-up examination, PR and CBCT, of which 74 patients (83 teeth) participated. Three observers assessed PR and CBCT as "successful healing" or "unsuccessful healing" using Rud and Molven's criteria. SER-R was offered to all non-healed teeth with expected favourable prognosis for subsequent functional retention. During SER-R, biopsy was performed and histopathology verified whether or not inflammation was present. All re-operated cases were assessed non-healed in CBCT while 11 of these were assessed successfully healed in PR. Nineteen biopsies were examined. Histopathologic diagnosis revealed 42% (teeth = 8) without periapical inflammation, 16% (teeth = 3) with mild inflammation and 42% (teeth = 8) with moderate to intense inflammation. A correct diagnosis was obtained in 58% with CBCT (true positives) and 63% with PR (true positives+true negatives). Of the re-operated teeth, 42% had no periapical inflammatory lesion, and hence no benefit from SER-R. Not all lesions observed in CBCT represented periapical inflammatory lesions.
Purpose: Scattered radiation remains to be a major contributor to image quality degradation in CBCT. To address the scatter problem, a focused, 2D antiscatter grid (2DASG) prototype was designed, and fabricated using additive manufacturing processes. Its scatter and primary transmission properties were characterized using a linac mounted CBCT system. Methods: The prototype 2DASG was composed of rectangular grid holes separated by tungsten septa, and has a grid pitch of 2.91 mm, grid ratio of 8, and a septal thickness of 0.1 mm. Each grid hole was aligned or focused towards the x-ray source in half-fan (i.e. offset detector) geometry ofmore » the Varian TrueBeam CBCT system. Scatter and primary transmission experiments were performed by using acrylic blocks and the beam-stop method. Transmission properties of a radiographic ASG (1DASG) (grid ratio of 10) was also performed by using the identical setup. Results: At 30 cm phantom thickness, scatter to primary ratio (SPR) was 4.51 without any ASG device. SPR was reduced to 1.28 with 1DASG, and it was further reduced to 0.28 with 2DASG. Scatter transmission fraction (Ts) of 1DASG was 21%, and Ts was reduced to 5.8% with 2DASG. The average primary transmission fraction (Tp) of 1DASG was 70.6%, whereas Tp increased to 85.1% with 2DASG. Variation of Tp across 40 cm length (the long axis of flat panel detector) was 2.6%. Conclusion: When compared to conventional ASGs, the focused 2DASG can vastly improve scatter suppression and primary transmission performance. Due to precise alignment of 2DASGâs grid holes with respect to beam divergence, high degree of primary transmission through the 2DASG was maintained across the full length of the prototype. We strongly believe that robust scatter rejection and primary transmission characteristics of our 2DASG can translate into both improved quantitative accuracy and soft tissue resolution in linac mounted CBCT systems.« less
Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infraredmore » marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8â105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was â0.65 (with a slope of â0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.« less
The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.
Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.
We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g., data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility. PMID:27694700
Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms
Purpose: A statistical projection restoration algorithm based on the penalized weighted least-squares (PWLS) criterion can substantially improve the image quality of low-dose CBCT images. The performance of PWLS is largely dependent on the choice of the penalty parameter. Previously, the penalty parameter was chosen empirically by trial and error. In this work, the authors developed an inverse technique to calculate the penalty parameter in PWLS for noise suppression of low-dose CBCT in image guided radiotherapy (IGRT). Methods: In IGRT, a daily CBCT is acquired for the same patient during a treatment course. In this work, the authors acquired the CBCTmore » with a high-mAs protocol for the first session and then a lower mAs protocol for the subsequent sessions. The high-mAs projections served as the goal (ideal) toward, which the low-mAs projections were to be smoothed by minimizing the PWLS objective function. The penalty parameter was determined through an inverse calculation of the derivative of the objective function incorporating both the high and low-mAs projections. Then the parameter obtained can be used for PWLS to smooth the noise in low-dose projections. CBCT projections for a CatPhan 600 and an anthropomorphic head phantom, as well as for a brain patient, were used to evaluate the performance of the proposed technique. Results: The penalty parameter in PWLS was obtained for each CBCT projection using the proposed strategy. The noise in the low-dose CBCT images reconstructed from the smoothed projections was greatly suppressed. Image quality in PWLS-processed low-dose CBCT was comparable to its corresponding high-dose CBCT. Conclusions: A technique was proposed to estimate the penalty parameter for PWLS algorithm. It provides an objective and efficient way to obtain the penalty parameter for image restoration algorithms that require predefined smoothing parameters.« less
In this article, co-written by a teacher and a professor, the authors examine possible explanations for why Adam (first author), a New York City public school special educator, failed the edTPA, a teacher performance assessment required by all candidates for state certification. Adam completed a yearlong teaching residency where he was the specialâ¦
A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.
Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.
Increasing interest in optimization-based reconstruction in research on, and applications of, cone-beam computed tomography (CBCT) exists because it has been shown to have to potential to reduce artifacts observed in reconstructions obtained with the FeldkampâDavisâKress (FDK) algorithm (or its variants), which is used extensively for image reconstruction in current CBCT applications. In this work, we carried out a study on optimization-based reconstruction for possible reduction of artifacts in FDK reconstruction specifically from short-scan CBCT data. The investigation includes a set of optimization programs such as the image-total-variation (TV)-constrained data-divergency minimization, data-weighting matrices such as the Parker weighting matrix, and objects of practical interest for demonstrating and assessing the degree of artifact reduction. Results of investigative work reveal that appropriately designed optimization-based reconstruction, including the image-TV-constrained reconstruction, can reduce significant artifacts observed in FDK reconstruction in CBCT with a short-scan configuration. PMID:27046218
Using Kentucky State Standards as Benchmarks: Quantifying Incoming Ed.S. Students' Knowledge as They Journey toward Principalship
MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study
An overlooked but important part of successful root canal treatment is a straight-line access (SLA). The purpose of this in vitro study was to compare the efficacy of IntroFile and PreRaCe rotary instruments with Gates Glidden (GG) drills in gaining SLA by cone-beam computed tomography (CBCT). A total of forty five extracted mandibular first molars were selected and mounted in dental like arches. Subsequently, they were randomly classified into three groups (n=15). After preparation of a standard access cavity, orifices of the mesiobuccal canal was reached and a #10 file was inserted to explore the canals until the file tip was visible at the apex. Then, preoperative CBCT images were taken. SLA was gained in three groups; group 1, FlexMaster's IntroFile (FM); group 2, PreRaCe (RC) and group 3, GG. Again, the first binding file at the working length (WL) was placed in the canal and postoperative CBCT images in similar positions were taken. The pre/post operative morphology of the canal was evaluated for changes. Data was analyzed using the one-way ANOVA and post-hoc Bonferroni analysis. The average amount of reduction in coronal canal curvature in FM, RC and GG groups was 2.43±1.79, 3.17±2.05 and 8.7±3.45, respectively. This descending trend was statistically significant. The difference between pre/post SLA changes in FM and RC groups was significant compared to GG group, while there were no significant differences between RC and FM. GG drills produced extraordinary results in reducing coronal curvature of the canal and achieving SLA. They are also more effective than nickel-titanium (NiTi) rotary instruments in canals with coronal curvature.
In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation results in a lower noise level as compared to the PWLS criterion without considering the noise correlation at the matched resolution.
Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.
The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Using an open-source "symmetric" Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8+/-0.3) mm and NCC =0.99 in the cadaveric head compared to TRE=(2.6+/-1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6+/-0.9) mm compared to rigid registration TRE=(3.6+/-1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1 x 1 x 2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in
A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.
Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting
Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.
A preobject grid can reduce and correct scatter in cone beam computed tomography (CBCT). However, half of the signal in each projection is blocked by the grid. A synchronized moving grid (SMOG) has been proposed to acquire two complimentary projections at each gantry position and merge them into one complete projection. That approach, however, suffers from increased scanning time and the technical difficulty of accurately merging the two projections per gantry angle. Herein, the authors present a new SMOG approach which acquires a single projection per gantry angle, with complimentary grid patterns for any two adjacent projections, and use an interprojection sensor fusion (IPSF) technique to estimate the blocked signal in each projection. The method may have the additional benefit of reduced imaging dose due to the grid blocking half of the incident radiation. The IPSF considers multiple paired observations from two adjacent gantry angles as approximations of the blocked signal and uses a weighted least square regression of these observations to finally determine the blocked signal. The method was first tested with a simulated SMOG on a head phantom. The signal to noise ratio (SNR), which represents the difference of the recovered CBCT image to the original image without the SMOG, was used to evaluate the ability of the IPSF in recovering the missing signal. The IPSF approach was then tested using a Catphan phantom on a prototype SMOG assembly installed in a bench top CBCT system. In the simulated SMOG experiment, the SNRs were increased from 15.1 and 12.7 dB to 35.6 and 28.9 dB comparing with a conventional interpolation method (inpainting method) for a projection and the reconstructed 3D image, respectively, suggesting that IPSF successfully recovered most of blocked signal. In the prototype SMOG experiment, the authors have successfully reconstructed a CBCT image using the IPSF-SMOG approach. The detailed geometric features in the Catphan phantom were mostly
Introduction: Transportation is an important iatrogenic endodontic error which might cause failure. This study evaluated the canal transportation caused by Neoniti and ProTaper instruments, using cone-beam computed tomography (CBCT) cross sections. Methods and Materials: This in vitro experimental study was performed on 40 mesiobuccal roots of maxillary first molars. The teeth were scanned with CBCT. They were randomly divided into 2 groups (n=20) that were prepared using either Neoniti or ProTaper files. An endodontist prepared the canal according to the manufacturerâs guidelines. Prepared canals were re-scanned. The pre-instrumentation and post-instrumentation CBCT volumes were sectioned at 1 to 9-mm distances from the apex. The extent of canal dentine removal in mesial and distal directions were measured in each cross-section. Canal transportation and instrument centering ability were estimated based on the extents of root wall removal and were compared in both groups. Results: The groups were rather similar in terms of transportation and centering ability (P>0.05). However, canal preparation on mesial and distal walls was statistically significantly less in the Neoniti group, at most cross-sections. Transportation of both groups was not significantly different (P>0.05). Centering ability of both instruments was not significantly different (P>0.05). Conclusion: Neoniti and ProTaper instruments might have proper centering ability and minimum transportations. Both instruments might cause similar extents of transportation and centering abilities. PMID:28179923
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5Â cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5Â cGy higher (pâ=â0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (pâ=â0.002) and 7.4% (pâ=â0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8Â cGy higher (pâ=â0.03) than the planned values per fraction, and the V26 increased by 8.8% (pâ=â0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30Â Gy will benefit the protection on parotids. PMID:24289312
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.
Erectile dysfunction (ED) is a prevalent condition that impacts on both patients and their female partners. ED may therefore be regarded as a shared sexual concern for couples. The current analysis of the Female Experience of Men's Attitudes to Life Events and Sexuality (FEMALES) study data addresses women's perceptions, beliefs, and attitudes concerning their partner's ED, and whether these are associated with the likelihood of the male partner seeking medical advice and utilizing phosphodiesterase type 5 inhibitors. The current research sought to explore the association of female partners' perceptions of male partners' ED and male partners' medical consultation and treatment seeking for ED. Questionnaires were sent to partners of men who participated in the Men's Attitudes to Life Events and Sexuality (MALES) 2004 study, and who consented to their partner's involvement. A modified version of the questionnaire used in the MALES study was developed for the FEMALES study, reflecting the female partner's perspective. A 65-item questionnaire assessing women's perceptions, beliefs, and attitudes regarding various aspects of ED. Women's perceptions of the nature and causes of their partner's ED were significantly associated with men's treatment seeking and utilization. Significant associations were observed between women's level of satisfaction with the relationship before ED onset; perceptions of the impact of ED on quality of life; desire to deal with ED; attitudes to ED treatment; and the treatment-seeking behavior of the male partner. Multivariate regression analyses identified a mixture of female and male partner perceptions and attitudes that uniquely accounted for >30% of the variance in men's ED treatment-seeking behavior and treatment utilization. This study illustrates the importance of the female partner's attitudes to ED in men's ED treatment-seeking behavior. These findings strongly support the potential benefits of partner integration into ED consultation
The purpose of this manuscript was to discuss the recommendations and guidelines of the Carnegie Group's 2007 effort to "Reclaim the EdD" as well as to outline the work completed at the University of Virginia related to their re-design of the Doctor of Education (EdD) degree. In order to address the re-envision and re-formulation of theâ¦
The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.
This chart describes the Skylab student experiment ED-61, Plant Growth, and experiment ED-62, Plant Phototropism. Two similar proposals were submitted by Joel G. Wordekemper of West Point, Nebraska, and Donald W. Schlack of Downey, California. Wordekemper's experiment (ED-61) was to see how the lack of gravity would affect the growth of roots and stems of plants. Schlack's experiment (ED-62) was to study the effect of light on a seed developing in zero gravity. The growth container of the rice seeds for their experiment consisted of eight compartments arranged in two parallel rows of four. Each had two windowed surfaces to allow periodic photography of the developing seedlings. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
In the context of adaptive radiation therapy (ART) for locally advanced cervical carcinoma (LACC), this study proposed an original cone-beam computed tomography (CBCT)-guided "Evolutive library" and evaluated it against four other known radiotherapy (RT) strategies. For 20 patients who underwent intensity-modulated radiation therapy (IMRT) for LACC, three planning CTs [with empty (EB), intermediate (IB), and full (FB) bladder volumes], a CT scan at 20 Gy and bi-weekly CBCTs for 5 weeks were performed. Five RT strategies were simulated for each patient: "Standard RT" was based on one IB planning CT; "internal target volume (ITV)-based RT" was an ITV built from the three planning CTs; "RT with one mid-treatment replanning (MidTtReplan)" corresponded to the standard RT with a replanning at 20 Gy; "Pretreatment library ART" using a planning library based on the three planning CTs; and the "Evolutive library ART", which was the "Pretreatment library ART" strategy enriched by including some CBCT anatomies into the library when the daily clinical target volume (CTV) shape differed from the ones in the library. Two planning target volume (PTV) margins of 7 and 10 mm were evaluated. All the strategies were geometrically compared in terms of the percentage of coverage by the PTV, for the CTV and the organs at risk (OAR) delineated on the CBCT. Inadequate coverage of the CTV and OARs by the PTV was also assessed using deformable image registration. The cumulated dose distributions of each strategy were likewise estimated and compared for one patient. The "Evolutive library ART" strategy involved a number of added CBCTs: 0 for 55%; 1 for 30%; 2 for 5%; and 3 for 10% of patients. Compared with the other four, this strategy provided the highest CTV geometric coverage by the PTV, with a mean (min-max) coverage of 98.5% (96.4-100) for 10 mm margins and 96.2% (93.0-99.7) for 7 mm margins (P < 0.05). Moreover, this strategy significantly decreased the geometric coverage of the bowel
Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario
More options. Canon has three entry level lines currently: The xx0D series that began with the 300D in 2003 and is currently topped by the 760D, the newer x00D series that began with the compact and lightweight 100D in 2013, and the XX00D series. They also now have a two-tiered mirrorless set in the Mx and the Mx0 series. Nikon has both a D3xx0 and D5xx0 entry level series that roughly correspond to Canon's xx0D and xx00D series. Sony also uses this strategy with different models that offer some of the same basic capability as their other models with more or fewer features as well as more models optimized for different tasks.
The NOURISHED randomised controlled trial comparing mentalisation-based treatment for eating disorders (MBT-ED) with specialist supportive clinical management (SSCM-ED) for patients with eating disorders and symptoms of borderline personality disorder.
Efficacy of CBCT for assessment of impacted mandibular third molars: a review â based on a hierarchical model of evidence
Shimizu, Mayumi; Okamura, Kazutoshi; Yoshida, Shoko; Weerawanich, Warangkana; Tokumori, Kenji; Jasa, Gainer R; Yoshiura, Kazunori
With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was ~4.0 cGy, which was ~40% higher than the Rt Lat dose of ~2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm à 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370° scan rotation (10° scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of ~10-11 cGy while the right hip received ~6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than ~12% to the table-drop setup.
A calibrator, referred to as the spider design, can be used to calibrate probes incorporating multiple acoustic sensing elements. The application is an acoustic energy density probe, although the calibrator can be used for other types of acoustic probes. The calibrator relies on the use of acoustic waveguide technology to produce the same acoustic field at each of the sensing elements. As a result, the sensing elements can be separated from each other, but still calibrated through use of the acoustic waveguides. Standard calibration techniques involve placement of an individual microphone into a small cavity with a known, uniform pressure to perform the calibration. If a cavity is manufactured with sufficient size to insert the energy density probe, it has been found that a uniform pressure field can only be created at very low frequencies, due to the size of the probe. The size of the energy density probe prevents one from having the same pressure at each microphone in a cavity, due to the wave effects. The "spider" design probe is effective in calibrating multiple microphones separated from each other. The spider design ensures that the same wave effects exist for each microphone, each with an indivdual sound path. The calibrator s speaker is mounted at one end of a 14-cm-long and 4.1-cm diameter small plane-wave tube. This length was chosen so that the first evanescent cross mode of the plane-wave tube would be attenuated by about 90 dB, thus leaving just the plane wave at the termination plane of the tube. The tube terminates with a small, acrylic plate with five holes placed symmetrically about the axis of the speaker. Four ports are included for the four microphones on the probe. The fifth port is included for the pre-calibrated reference microphone. The ports in the acrylic plate are in turn connected to the probe sensing elements via flexible PVC tubes. These five tubes are the same length, so the acoustic wave effects are the same in each tube. The
CCT is a Java based application for calibrating 10 shear wave coda measurement models to observed data using a much smaller set of reference moment magnitudes (MWs) calculated from other means (waveform modeling, etc.). These calibrated measurement models can then be used in other tools to generate coda moment magnitude measurements, source spectra, estimated stress drop, and other useful measurements for any additional events and any new data collected in the calibrated region.
Standard cone-beam computed tomography (CBCT) involves the acquisition of at least 360 projections rotating through 360 degrees. Nevertheless, there are cases in which only a few projections can be taken in a limited angular span, such as during surgery, where rotation of the source-detector pair is limited to less than 180 degrees. Reconstruction of limited data with the conventional method proposed by Feldkamp, Davis and Kress (FDK) results in severe artifacts. Iterative methods may compensate for the lack of data by including additional prior information, although they imply a high computational burden and memory consumption. We present an accelerated implementation of an iterative method for CBCT following the Split Bregman formulation, which reduces computational time through GPU-accelerated kernels. The implementation enables the reconstruction of large volumes (>1024 3 pixels) using partitioning strategies in forward- and back-projection operations. We evaluated the algorithm on small-animal data for different scenarios with different numbers of projections, angular span, and projection size. Reconstruction time varied linearly with the number of projections and quadratically with projection size but remained almost unchanged with angular span. Forward- and back-projection operations represent 60% of the total computational burden. Efficient implementation using parallel processing and large-memory management strategies together with GPU kernels enables the use of advanced reconstruction approaches which are needed in limited-data scenarios. Our GPU implementation showed a significant time reduction (up to 48 Ã) compared to a CPU-only implementation, resulting in a total reconstruction time from several hours to few minutes.
This short article presents a summary of the NetSciEd (Network Science and Education) initiative that aims to address the need for curricula, resources, accessible materials, and tools for introducing K-12 students and the general public to the concept of networks, a crucial framework in understanding complexity. NetSciEd activities include (1)â¦
The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH
Patient-specific calibration of cone-beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment.
Aims: To evaluate the reliability and reproducibility of calculating the Bolton Index using cone-beam computed tomography (CBCT), and to compare this with measurements obtained using the 2D Digital Method. Material and Methods: Traditional study models were obtained from 50 patients, which were then digitized in order to be able to measure them using the Digital Method. Likewise, CBCTs of those same patients were undertaken using the Dental Picasso Master 3D® and the images obtained were then analysed using the InVivoDental programme. Results: By determining the regression lines for both measurement methods, as well as the difference between both of their values, the two methods are shown to be comparable, despite the fact that the measurements analysed presented statistically significant differences. Conclusions: The three-dimensional models obtained from the CBCT are as accurate and reproducible as the digital models obtained from the plaster study casts for calculating the Bolton Index. The differences existing between both methods were clinically acceptable. Key words:Tooth-size, digital models, bolton index, CBCT. PMID:22549690
We experience our lives as a series of memorable moments, some good and some bad. Undoubtedly, the experience of participating in disaster response, is likely to stand out as a memorable moment in a nurses' career. This presentation will describe five distinct moments of nursing in the emergency department (ED) during a disaster response. A Hermeneutic Phenomenological approach informed by van Manen underpins the research process. Thirteen nurses from different countries around the world participated in interviews about their experience of working in the ED during a disaster. Thematic analysis resulted in five moments of disaster response which are common to the collective participant experience. The 5 themes emerge as Notification (as a nurse finds out that the ED will be receiving casualties), Waiting (waiting for the patients to arrive to the ED), Patient Arrival (the arrival of the first patients to the ED), Caring for patients (caring for people affected by the disaster) and Reflection (the moment the disaster response comes to an end). This paper provides an in-depth insight into the experience of nursing in the ED during a disaster response which can help generate awareness and inform future disaster preparedness of emergency nurses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
To evaluate the use of the emergency department (ED) by elderly patients, their non-urgent visits and the prevalence of main disease for ED visits. This cross-sectional study was conducted on patients aged 65 years and over who visited the ED of a tertiary care university hospital in Turkey between January 2015 and January 2016 retrospectively. A total of 36,369 elderly patients who visited the ED were included in the study. The rate of ED visits by elderly patients was higher than their representation within the general population (p < 0.001). While the rate of elderly patients visiting polyclinics was 15.8%, the rate of elderly patients visiting the ED was 24.3% (p < 0.001). For both genders, the rates of ED visits for patients between 65 and 74 years old was higher than for other elderly age groups (p < 0.001). The prevalence of upper respiratory tract infection (URTI) was the highest within the elderly population (17.5%, CI: 17.1-17.9). The proportion of ED visits for non-urgent conditions was 23.4%. Most of the ED visits were during the non-business hours (51.1%), and they were highest in the winter season (25.9%) and in January (10.2%). The hospitalization rate was 9.4%, and 37.9% of hospitalized patients were admitted to intensive care units. The proportion of ED visits by elderly patients was higher than their representation within the general population. Elderly patients often visited the ED instead of a polyclinic. The rate of inappropriate ED use by elderly patients in this hospital was higher than in other countries.
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.
Purpose: To investigate whether CBCT and CT can be used in radiomics analysis simultaneously. To establish a batch correction method for radiomics in two similar image modalities. Methods: Four sites including rectum, bladder, femoral head and lung were considered as region of interest (ROI) in this study. For each site, 10 treatment planning CT images were collected. And 10 CBCT images which came from same site of same patient were acquired at first radiotherapy fraction. 253 radiomics features, which were selected by our test-retest study at rectum cancer CT (ICC>0.8), were calculated for both CBCT and CT images in MATLAB.more » Simple scaling (z-score) and nonlinear correction methods were applied to the CBCT radiomics features. The Pearson Correlation Coefficient was calculated to analyze the correlation between radiomics features of CT and CBCT images before and after correction. Cluster analysis of mixed data (for each site, 5 CT and 5 CBCT data are randomly selected) was implemented to validate the feasibility to merge radiomics data from CBCT and CT. The consistency of clustering result and site grouping was verified by a chi-square test for different datasets respectively. Results: For simple scaling, 234 of the 253 features have correlation coefficient Ï>0.8 among which 154 features haveÏ>0.9 . For radiomics data after nonlinear correction, 240 of the 253 features have Ï>0.8 among which 220 features have Ï>0.9. Cluster analysis of mixed data shows that data of four sites was almost precisely separated for simple scaling(p=1.29 * 10{sup â7}, Ï{sup 2} test) and nonlinear correction (p=5.98 * 10{sup â7}, Ï{sup 2} test), which is similar to the cluster result of CT data (p=4.52 * 10{sup â8}, Ï{sup 2} test). Conclusion: Radiomics data from CBCT can be merged with those from CT by simple scaling or nonlinear correction for radiomics analysis.« less
A test material for routine performance evaluation of energy-dispersive X-ray spectrometers (EDS) is presented. It consists of a synthetic, thick coating of C, Al, Mn, Cu, and Zr, in an elemental composition that provides interference-free characteristic X-ray lines of similar intensities at 10 kV scanning electron microscope voltage. The EDS energy resolution at the C-K, Mn-Lα, Cu-Lα, Al-K, Zr-Lα, and Mn-Kα lines, the calibration state of the energy scale, and the Mn-Lα/Mn-Kα intensity ratio as a measure for the low-energy detection efficiency are calculated by a dedicated software package from the 10 kV spectrum. Measurements at various input count rates and processor shaping times enable an estimation of the operation conditions for which the X-ray spectrum is not yet corrupted by pile-up events. Representative examples of EDS systems characterized with the test material and the related software are presented and discussed.
Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to expertsâ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less
Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintainmore » the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a
Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p < 0.05 was considered to be statistically significant. 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group.
A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.
Miller, Ivan W; Camargo, Carlos A; Arias, Sarah A; Sullivan, Ashley F; Allen, Michael H; Goldstein, Amy B; Manton, Anne P; Espinola, Janice A; Jones, Richard; Hasegawa, Kohei; Boudreaux, Edwin D
Types of reading disabilities (RD) have not yet been investigated in students classified with emotional disturbance (ED). The prevalence of RD and differentiating characteristics were examined in 118 middle school students attending a self-contained school for ED students by defining RDs with reading standard scores less than 85 on the twoâ¦
Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTracmore » and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), â0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), â0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.« less
Purpose: Low-dose CBCT is desired in various clinical applications. Iterative image reconstruction algorithms have shown advantages in suppressing noise in low-dose CBCT. However, due to the smoothness constraint enforced during the reconstruction process, edges may be blurred and image features may lose in the reconstructed image. In this work, we proposed a new penalty design to preserve image features in the image reconstructed by iterative algorithms. Methods: Low-dose CBCT is reconstructed by minimizing the penalized weighted least-squares (PWLS) objective function. Binary Robust Independent Elementary Features (BRIEF) of the image were integrated into the penalty of PWLS. BRIEF is a generalmore » purpose point descriptor that can be used to identify important features of an image. In this work, BRIEF distance of two neighboring pixels was used to weigh the smoothing parameter in PWLS. For pixels of large BRIEF distance, weaker smooth constraint will be enforced. Image features will be better preserved through such a design. The performance of the PWLS algorithm with BRIEF penalty was evaluated by a CatPhan 600 phantom. Results: The image quality reconstructed by the proposed PWLS-BRIEF algorithm is superior to that by the conventional PWLS method and the standard FDK method. At matched noise level, edges in PWLS-BRIEF reconstructed image are better preserved. Conclusion: This study demonstrated that the proposed PWLS-BRIEF algorithm has great potential on preserving image features in low-dose CBCT.« less
To evaluate the presence or absence of periapical (PA) radiolucencies on individual roots of teeth with necrotic pulps, as assessed with digital PA radiographs and cone-beam computed tomography (CBCT). Digital PA radiographs and CBCT scans were taken from 161 endodontically untreated teeth (from 155 patients) diagnosed with non-vital pulps (pulp necrosis with normal PA tissue, symptomatic apical periodontitis, asymptomatic apical periodontitis, acute apical abscess and chronic apical abscess). Images were assessed by two calibrated endodontists to analyse the radiographic PA status of the teeth. A consensus was reached in the event of any disagreement. The data were analysed using a McNemar's test, and significance was set at P ⤠0.05. Three hundred and forty paired images of roots were assessed with both digital PA radiographs and CBCT images. Fifteen additional roots were identified with CBCT. PA radiolucencies were present in 132 (38.8%) roots when assessed with PA radiographs, and in 196 (57.6%) roots when assessed with CBCT. This difference was statistically significant (P < 0.05). In teeth diagnosed with pulp necrosis, symptomatic apical periodontitis or acute apical abscess, CBCT images revealed a statistically larger number of PA radiolucencies than did PA radiographs (P < 0.05). No statistical differences were observed between PA radiographs and CBCT in teeth classified with asymptomatic apical periodontitis (P = 0.31) or chronic apical abscess (P = 1). Unlike PA radiographs, CBCT revealed a higher prevalence of PA radiolucencies when endodontically untreated teeth with non-vital pulps were examined. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
A radiographic examination of mandibular third molars is meant to support the surgeon in establishing a treatment plan. For years panoramic (PAN) imaging has been the first choice method; however, where an overprojection is observed between the third molar and the mandibular canal and when specific signs suggest a close contact between the molar and the canal, CBCT may be indicated. The present review provides an evaluation of the efficacy of CBCT for assessment of mandibular third molars using a six-tiered hierarchical model by Fryback and Thornbury in 1991. Levels 1â3 include studies on low evidence levels mainly regarding the technical capabilities of a radiographic method and the diagnostic accuracy of the related images. Levels 4â6 include studies on a higher level of evidence and assess the diagnostic impact of a radiographic method on the treatment of the patient in addition to the outcome for the patient and society including cost calculations. Only very few high-evidence studies on the efficacy of CBCT for radiographic examination of mandibular third molars exist and, in conclusion, periapical or PAN examination is sufficient in most cases before removal of mandibular third molars. However, CBCT may be suggested when one or more signs for a close contact between the tooth and the canal are present in the two-dimensional imageâif it is believed that CBCT will change the treatment or the treatment outcome for the patient. Further research on high-evidence levels is needed. PMID:25135317
Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT
To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy. Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)âCOMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)â15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPDâCOMS between the lesion in estimated and "ground
... 34 Education 1 2010-07-01 2010-07-01 false Age distinctions contained in ED's regulations. 110.17..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Standards for Determining Age Discrimination § 110.17 Age distinctions contained in ED...
To evaluate the accuracy and reproducibility of linear measurements made on cone-beam computed tomography (CBCT)-derived digital models. A total of 25 patients (44% female, 18.7 ± 4 years) who had CBCT images for diagnostic purposes were included. Plaster models were obtained and digital models were extracted from CBCT scans. Seven linear measurements from predetermined landmarks were measured and analyzed on plaster models and the corresponding digital models. The measurements included arch length and width at different sites. Paired t test and Bland-Altman analysis were used to evaluate the accuracy of measurements on digital models compared to the plaster models. Also, intraclass correlation coefficients (ICCs) were used to evaluate the reproducibility of the measurements in order to assess the intraobserver reliability. The statistical analysis showed significant differences on 5 out of 14 variables, and the mean differences ranged from -0.48 to 0.51 mm. The Bland-Altman analysis revealed that the mean difference between variables was (0.14 ± 0.56) and (0.05 ± 0.96) mm and limits of agreement between the two methods ranged from -1.2 to 0.96 and from -1.8 to 1.9 mm in the maxilla and the mandible, respectively. The intraobserver reliability values were determined for all 14 variables of two types of models separately. The mean ICC value for the plaster models was 0.984 (0.924-0.999), while it was 0.946 for the CBCT models (range from 0.850 to 0.985). Linear measurements obtained from the CBCT-derived models appeared to have a high level of accuracy and reproducibility.
Purpose: To evaluate the quality of monochromatic images at the same virtual monochromatic energy using dual cone-beam computed tomography (CBCT) with either kV/kV or MV/kV or MV/MV energy sets. Methods: CT images of Catphan 504 phantom were acquired using four different KV and MV settings: 80kV, 140kV, 4MV, 6MV. Three sets of monochromatic images were calculated: 80kV-140kV, 140kV-4MV and 4MV-6MV. Each set of CBCT images were reconstructed from the same selected virtual monochromatic energy of 1MeV. Contrast-to-Noise Ratios (CNRs) were calculated and compared between each pair of images with different energy sets. Results: Between kV/MV and MV/MV images, the CNRsmore » are comparable for all inserts. However, differences of CNRs were observed between the kV/kV and kV/MV images. Delrinâs CNR ratio between kV/kV image and kV/MV image is 1.634. LDPEâs (Low-Density Polyethylene) CNR ratio between kV/kV and kV/MV images is 0.509. Polystyreneâs CNR ratio between kV/kV image and kV/MV image is 2.219. Conclusion: Preliminary results indicated that the CNRs calculated from CBCT images reconstructed from either kV/MV projections or MV/MV projections for the same selected virtual monochromatic energy may be comparable.« less
1 Annex II. TWSTFT link calibration with a GPS calibrator Calibration reference: CI-888-2015 Version history: ZJ/V0/25Feb2015, V0a,b/HE/ZJ...7Mar; V0s/VZ9Mar; V0d,e,f+/DM10,17Mar; V1.0/1Apr; Final version 1Sept2015 TWSTFT link calibration report -- Calibration of the Lab(k)-PTB UTC...bipm.org * Coordinator Abstract This report includes the calibration results of the Lab(k)-PTB TWSTFT link and closure measurements of the BIPM
Ag-Ed is an agricultural education project aimed at upper primary students, held in conjunction with the Toowoomba Show (similar to a county fair) in Queensland, Australia. The program achieves its purpose of helping children understand the impact and relevance that agriculture has on their everyday lives through two components, an Ag-Ed day and aâ¦
Comparison Between One-Point Calibration and Two-Point Calibration Approaches in a Continuous Glucose Monitoring Algorithm
ED"Facts" is a U.S. Department of Education (ED) initiative to govern, acquire, validate, and use high-quality, kindergarten through grade 12 (K-12) performance data for education planning, policymaking, and management and budget decision making to improve outcomes for students. ED"Facts" centralizes data provided by stateâ¦
Erectile dysfunction (ED) is a shared sexual concern of couples II: association of female partner characteristics with male partner ED treatment seeking and phosphodiesterase type 5 inhibitor utilization.
Fotouhi, Javad; Fuerst, Bernhard; Unberath, Mathias; Reichenstein, Stefan; Lee, Sing Chun; Johnson, Alex A.; Osgood, Greg M.; Armand, Mehran; Navab, Nassir
Post-processing open-source software for the CBCT monitoring of periapical lesions healing following endodontic treatment: technical report of two cases.
CBCT. Journal of Dental Research , Dental Clinics , Dental Prospects 2014;8(2):107-10. 26. Kim D, Rashsuren O, Kim E. Conversion coefficients for the... International Journal of Oral & Maxillofacial Implants 2014;29:55-77. 10. Brooks SL. Radiation doses of common dental radiographic examinations: A review...dose was measured with metalâoxideâsemiconductor field-effect transistor (MOSFET) dosimeters for five CBCT devices in a postgraduate dental clinic
Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: reliability of mucosa-supported stereolithographic guides.
... Provers, 3rd Ed. MPMS Ch. 4.9.3, Methods of Calibration for Displacement and Volumetric Tank Provers, Part 3--Determination of the Volume of Displacement Provers by the Master Meter Method of Calibration, 1st Ed. MPMS Ch. 4.9.4, Methods of Calibration for Displacement and Volumetric Tank Provers, Part 4...
An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone-beam computed tomography.
Soremekun, Olanrewaju A; Biddinger, Paul D; White, Benjamin A; Sinclair, Julia R; Chang, Yuchiao; Carignan, Sarah B; Brown, David F M
Zanobetti, Maurizio; Scorpiniti, Margherita; Gigli, Chiara; Nazerian, Peiman; Vanni, Simone; Innocenti, Francesca; Stefanone, Valerio T; Savinelli, Caterina; Coppa, Alessandro; Bigiarini, Sofia; Caldi, Francesca; Tassinari, Irene; Conti, Alberto; Grifoni, Stefano; Pini, Riccardo
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest
Purpose: The current standard for calculation of photon and electron dose requires conversion of Hounsfield Units (HU) to Electron Density (ED) by applying a calibration curve specifically constructed for the corresponding CT tube voltage. This practice limits the use of the CT scanner to a single tube voltage and hinders the freedom in the selection of optimal tube voltage for better image quality. The objective of this study is to report a prototype CT reconstruction algorithm that provides direct ED images from the raw CT data independently of tube voltages used during acquisition. Methods: A tissue substitute phantom was scannedmore » for Stoichiometric CT calibrations at tube voltages of 70kV, 80kV, 100kV, 120kV and 140kV respectively. HU images and direct ED images were acquired sequentially on a thoracic anthropomorphic phantom at the same tube voltages. Electron densities converted from the HU images were compared to ED obtained from the direct ED images. A 7-field treatment plan was made on all HU and ED images. Gamma analysis was performed to demonstrate quantitatively dosimetric change from the two schemes in acquiring ED. Results: The average deviation of EDs obtained from the direct ED images was â1.5%±2.1% from the EDs from HU images with the corresponding CT calibration curves applied. Gamma analysis on dose calculated on the direct ED images and the HU images acquired at the same tube voltage indicated negligible difference with lowest passing rate at 99.9%. Conclusion: Direct ED images require no CT calibration while demonstrate equivalent dosimetry compared to that obtained from standard HU images. The ability of acquiring direct ED images simplifies the current practice at a safer level by eliminating CT calibration and HU conversion from commissioning and treatment planning respectively. Furthermore, it unlocks a wider range of tube voltages in CT scanner for better imaging quality while maintaining similar dosimetric accuracy.« less
Statement of the Problem: Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. Purpose: The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. Materials and Method: In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p< 0.05 was considered to be statistically significant. Results: 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Conclusion: Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group. PMID:28620632
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is formulated to determine long-term climate trends using SI-traceable measurements. The CLARREO mission will include instruments operating in the reflected solar (RS) wavelength region from 320 nm to 2300 nm. The Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO and facilitates testing and evaluation of calibration approaches. The basis of CLARREO and SOLARIS calibration is the Goddard Laser for Absolute Measurement of Response (GLAMR) that provides a radiance-based calibration at reflective solar wavelengths using continuously tunable lasers. SI-traceability is achieved via detector-based standards that, in GLAMRs case, are a set of NIST-calibrated transfer radiometers. A portable version of the SOLARIS, Suitcase SOLARIS is used to evaluate GLAMRs calibration accuracies. The calibration of Suitcase SOLARIS using GLAMR agrees with that obtained from source-based results of the Remote Sensing Group (RSG) at the University of Arizona to better than 5 (k2) in the 720-860 nm spectral range. The differences are within the uncertainties of the NIST-calibrated FEL lamp-based approach of RSG and give confidence that GLAMR is operating at 5 (k2) absolute uncertainties. Limitations of the Suitcase SOLARIS instrument also discussed and the next edition of the SOLARIS instrument (Suitcase SOLARIS- 2) is expected to provide an improved mechanism to further assess GLAMR and CLARREO calibration approaches. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The educational doctorate (EdD) is being re-envisioned as a distinct professional degree. Today's EdD graduates are envisioned as scholarly practitioners. Given this it may be reasoned these individuals have unique identities comprised of several layers. In this study, we examined how 18 entering students and 17 graduating students from an EdDâ¦
A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.
The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.
The proceedings of the fourth annual NASA Metrology and Calibration Workshop are presented. This workshop covered (1) review and assessment of NASA metrology and calibration activities by NASA Headquarters, (2) results of audits by the Office of Inspector General, (3) review of a proposed NASA Equipment Management System, (4) current and planned field center activities, (5) National Bureau of Standards (NBS) calibration services for NASA, (6) review of NBS's Precision Measurement and Test Equipment Project activities, (7) NASA instrument loan pool operations at two centers, (8) mobile cart calibration systems at two centers, (9) calibration intervals and decals, (10) NASA Calibration Capabilities Catalog, and (11) development of plans and objectives for FY 1981. Several papers in this proceedings are slide presentations only.
Purpose To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume to evaluate the method. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and âground-truthâ on board 4D-CBCT. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against 3 lung patients. Results The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
How do ED patients with criminal justice contact compare with other ED users? A retrospective analysis of ED visits in California.
Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy.
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associatedmore » algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and
Metal artifact reduction by filter-based dual-energy cone-beam computed tomography on a bench-top micro-CBCT system: concept and demonstration.
Purpose: One primary limitation of using CBCT images for H'N adaptive radiotherapy (ART) is the limited field of view (FOV) range. We propose a method to extrapolate the CBCT by using a deformed planning CT for the dose of the day calculations. The aim was to estimate the geometric uncertainty of our extrapolation method. Methods: Ten H'N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken, were selected. Furthermore, a small FOV CBCT (CT2short) was synthetically created by cropping CT2 to the size of a CBCT image. Then, an extrapolated CBCT (CBCTextrp) was generated by deformablymore » registering CT1 to CT2short and resampling with a wider FOV (42mm more from the CT2short borders), where CT1 is deformed through translation, rigid, affine, and b-spline transformations in order. The geometric error is measured as the distance map ||DVF|| produced by a deformable registration between CBCTextrp and CT2. Mean errors were calculated as a function of the distance away from the CBCT borders. The quality of all the registrations was visually verified. Results: Results were collected based on the average numbers from 10 patients. The extrapolation error increased linearly as a function of the distance (at a rate of 0.7mm per 1 cm) away from the CBCT borders in the S/I direction. The errors (μ±Ï) at the superior and inferior boarders were 0.8 ± 0.5mm and 3.0 ± 1.5mm respectively, and increased to 2.7 ± 2.2mm and 5.9 ± 1.9mm at 4.2cm away. The mean error within CBCT borders was 1.16 ± 0.54mm . The overall errors within 4.2cm error expansion were 2.0 ± 1.2mm (sup) and 4.5 ± 1.6mm (inf). Conclusion: The overall error in inf direction is larger due to more large unpredictable deformations in the chest. The error introduced by extrapolation is plan dependent. The mean error in the expanded region can be large, and must be considered during implementation. This work is supported in part by Varian Medical Systems, Palo Alto, CA.« less
Rigaud, Bastien; Simon, Antoine; Gobeli, Maxime; Lafond, Caroline; Leseur, Julie; Barateau, Anais; Jaksic, Nicolas; Castelli, Joël; Williaume, Danièle; Haigron, Pascal; De Crevoisier, Renaud
The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ~5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.
Evaluation of non-rigid constrained CT/CBCT registration algorithms for delineation propagation in the context of prostate cancer radiotherapy
Purpose: To develop a novel on-board imaging technique which allows generation of virtual monochromatic (VM) cone-beam CT (CBCT) with a selected energy from combined kilovoltage (kV)/megavoltage (MV) beam projections. Methods: With the current orthogonal kV/MV imaging hardware equipped in modern linear accelerators, both MV projections (from gantry angle of 0°â100°) and kV projections (90°â200°) were acquired as gantry rotated a total of 110°. A selected range of overlap projections between 90° to 100° were then decomposed into two material projections using experimentally determined parameters from orthogonally stacked aluminum and acrylic step-wedges. Given attenuation coefficients of aluminum and acrylic at amore » predetermined energy, one set of VM projections could be synthesized from two corresponding sets of decomposed projections. Two linear functions were generated using projection information at overlap angles to convert kV and MV projections at nonoverlap angles to approximate VM projections for CBCT reconstruction. The contrast-to-noise ratios (CNRs) were calculated for different inserts in VM CBCTs of a CatPhan phantom with various selected energies and compared with those in kV and MV CBCTs. The effect of overlap projection number on CNR was evaluated. Additionally, the effect of beam orientation was studied by scanning the CatPhan sandwiched with two 5 cm solid-water phantoms on both lateral sides and an electronic density phantom with two metal bolt inserts. Results: Proper selection of VM energy [30 and 40 keV for low-density polyethylene (LDPE), polymethylpentene, 2 MeV for Delrin] provided comparable or even better CNR results as compared with kV or MV CBCT. An increased number of overlap kV and MV projection demonstrated only marginal improvements of CNR for different inserts (with the exception of LDPE) and therefore one projection overlap was found to be sufficient for the CatPhan study. It was also evident that the optimal CBCT
SU-E-J-119: Head-And-Neck Digital Phantoms for Geometric and Dosimetric Uncertainty Evaluation of CT-CBCT Deformable Image Registration
The edTPA has recently emerged within the past few years as an innovative Teacher Performance Assessment and is currently adopted to some extent in 34 states. Researchers conducted four focus groups with 16 teacher candidates during and immediately after completion of the edTPA at North Carolina State University. When asked to articulate aboutâ¦
Objectives: To identify guidelines on the clinical use of CBCT in dental and maxillofacial radiology, in particular selection criteria, to consider how they were produced, to appraise their quality objectively and to compare their recommendations. Methods: A literature search using MEDLINE (Ovid®) was undertaken prospectively from 1 January 2000 to identify published material classifiable as âguidelinesâ pertaining to the use of CBCT in dentistry. This was supplemented by searches on websites, an internet search engine, hand searching of theses and by information from personal contacts. Quality assessment of publications was performed using the AGREE II instrument. Publications were examined for areas of agreement and disagreement. Results: 26 publications were identified, 11 of which were specifically written to give guidelines on the clinical use of CBCT and contained sections on selection criteria. The remainder were a heterogeneous mixture of publications that included guidelines relating to CBCT. Two had used a formal evidence-based approach for guideline development and two used consensus methods. The quality of publications was frequently low as assessed using AGREE II, with many lacking evidence of adequate methodology. There was broad agreement between publications on clinical use, apart from treatment planning, in implant dentistry. Conclusions: Reporting of guideline development is often poorly presented. Guideline development panels should aim to perform and report their work using the AGREE II instrument as a template to raise standards and avoid the risk of suspicions of bias. PMID:25270063
This article reviews the various clinical applications of cone-beam computed tomography (CBCT). A literature search was conducted via PubMed for publications related to dental applications of CBCT published between January 1998 and June 15, 2010. The search revealed a total of 540 articles, 129 of which were clinically relevant and analyzed in detail. A literature review demonstrated that CBCT has been utilized for oral and maxillofacial surgery, endodontics, implantology, orthodontics, temporomandibular joint dysfunction, periodontics, and restorative and forensic dentistry. This literature review showed that the different indications for CBCT are governed by the needs of the specific dental discipline and the type of procedure performed.
Purpose C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2Dâ3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Methods Intensity-based 2Dâ3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. Results The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of Îθ : ~ 30°. The two C-arm systems provided TREmean ⤠2.5 mm and TREmean ⤠2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). Conclusions C-arm 3D localization from dual 2Dâ3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system. PMID:25503592
Davies, Sheryl; Schultz, Ellen; Raven, Maria; Wang, Nancy Ewen; Stocks, Carol L; Delgado, Mucio Kit; McDonald, Kathryn M
It is known that Cone Beam Computed Tomography (CBCT) provides reliable spatial data and has many clinical applications for dental and particularly orthodontic patients. The present article provides a short review of the literature and reports an unusual CBCT finding in an orthodontic patient referred for the assessment of impacted upper canines. A unilateral lesion in the left maxillary sinus, was an incidental finding. Following a histological examination, which revealed unilateral nasal polyps, surgical removal was performed as the treatment of choice.
4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction.
Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.
Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Îp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Îp have potential to be the classification parameters of dental calcium density.
Inverse determination of the penalty parameter in penalized weighted least-squares algorithm for noise reduction of low-dose CBCT
Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager's deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10âmm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, Ï. Projection images of the phantom incorporating the CBCT scanner's geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed
To develop and validate rates of potentially preventable emergency department (ED) visits as indicators of community health. Agency for Healthcare Research and Quality, Healthcare Cost and Utilization Project 2008-2010 State Inpatient Databases and State Emergency Department Databases. Empirical analyses and structured panel reviews. Panels of 14-17 clinicians and end users evaluated a set of ED Prevention Quality Indicators (PQIs) using a Modified Delphi process. Empirical analyses included assessing variation in ED PQI rates across counties and sensitivity of those rates to county-level poverty, uninsurance, and density of primary care physicians (PCPs). ED PQI rates varied widely across U.S. communities. Indicator rates were significantly associated with county-level poverty, median income, Medicaid insurance, and levels of uninsurance. A few indicators were significantly associated with PCP density, with higher rates in areas with greater density. A clinical and an end-user panel separately rated the indicators as having strong face validity for most uses evaluated. The ED PQIs have undergone initial validation as indicators of community health with potential for use in public reporting, population health improvement, and research. © Health Research and Educational Trust.
To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment
Purpose: Four dimensional computed tomography (4DCT) scans reliably record whole respiratory phase and generate internal target volumes (ITV) for radiotherapy planning. However, image guiding with cone-beam computed tomography (CBCT) cannot acquire all or specific respiratory phases. This study was designed to investigate the correlation between average CT and Maximum Intensity Projection (MIP) from 4DCT and CBCT. Methods: Retrospective respiratory gating were performed by GE Discovery CT590 RT. 4DCT and CBCT data from CRIS Dynamic Thorax Phantom with simulated breathing mode were analyzed. The lung tissue equivalent material encompassed 3 cm sphere tissue equivalent material. Simulated breathing cycle period was setmore » as 4 seconds, 5 seconds and 6 seconds for representing variation of patient breathing cycle time, and the sphere material moved toward inferior and superior direction with 1 cm amplitude simulating lung tumor motion during respiration. Results: Under lung window, the volume ratio of CBCT scans to ITVs derived from 10 phases average scans was 1.00 ± 0.02, and 1.03 ± 0.03 for ratio of CBCT scans to MIP scans. Under abdomen window, the ratio of CBCT scans to ITVs derived from 10 phases average scans was 0.39 ± 0.06, and 0.06 ± 0.00 for ratio of CBCT scans to MIP scans. There was a significant difference between lung window Result and abdomen window Result. For reducing image guiding uncertainty, CBCT window was set with width 500 and level-250. The ratio of CBCT scans to ITVs derived from 4 phases average scans with abdomen window was 1.19 ± 0.02, and 1.06 ± 0.01 for ratio of CBCT to MIP scans. Conclusion: CBCT images with suitable window width and level can efficiently reduce image guiding uncertainty for patient with mobile tumor. By our setting, we can match motion tumor to gating tumor location on planning CT more accurately neglecting other motion artifacts during CBCT scans.« less
The objective of the present study was to comparatively evaluate the oropharyngeal space of patients with obstructive sleep apnea syndrome (OSA) and asthma by means of Cone Beam Computed Tomography (CBCT) images. The study included individuals with OSA and asthma (n=10), with OSA and without asthma (n=6), asthmatics without OSA (n=6) and healthy individuals (n=25). All patients were evaluated by a pneumologist and submitted to a nocturnal polysomnogram. Participants underwent CBCT examinations using an I-CAT ® device (Imaging Sciences International, Hatfield, PA, U.S.A.) and all images were exported to Dolphin Image 3D ® software. Cephalometric measurements were taken, as well as measurements of length (C), volume (VOL), sagittal area (SA) and minimum cross-sectional area (MCA); an evaluation was made of the format and contour of the upper airway in three dimensions, with p<0.05 considered significant. In the results of the present study, a statistically significant difference was found between VOL, SA and MCA (p=0.011; p=0.009; p=0.010) with reduced elevated values among the OSA+Asthma, OSA, Asthma and Control groups. Significant differences were seen between the linear (AP), cross-sectional (TR) and mean transverse area (TA) measurements in the group of patients with OSA and asthma as compared to the control group. In the control group, the greatest narrowing of the airway was observed either in the retroglossal or retropalatal area, while more patients in the experimental groups showed narrowing in the retropalatal area. The condition of OSA+asthma was associated with a substantial reduction in upper airway measurements in comparison to controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Coudyzer, Walter; Salmon, Benjamin; Lambrichts, Ivo; Jacobs, Reinhilde
Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.
We evaluated two dual-energy cone-beam computed tomography (DE-CBCT) methodologies for a bench-top micro-CBCT system to reduce metal artifacts on reconstructed images. Two filter-based DE-CBCT methodologies were tested: (i) alternative spectral switching and (ii) simultaneous beam splitting. We employed filters of 0.6-mm-thick tin and 0.1-mm-thick tungsten to generate high- and low-energy spectra from 120 kVp X-rays, respectively. The spectral switching method was imitated by two half scans with different filters (pseudo-switching). Filters were placed and between the X-ray tube and a phantom ('1-u,' '2-u'), a phantom and a flat panel detector ('1-d,' '2-d'), and compared with (iii) two half scans at 80 and 140 kVp [pseudo-(80,140)]. For the splitting method, two half-width filters were aligned along a rotating axis. Projections were separated into halves and merged with corresponding areas of opposed projections after one full rotation. A solid 30-mm-diameter acrylic phantom and an acrylic phantom with four 5-mm-diameter titanium rods were used. DE images were generated by weighted summation of the high- and low-energy images. The blending factor was changed from 0 to +5 in increments of 0.01. Relative errors (REs) of the linear attenuation coefficients of the two phantoms and the contrast-to-noise ratios (CNRs) between the titanium and acrylic regions were compared. All methods showed zero REs except for the method (2-d). CNRs for pseudo-switching with upstream placement were 1.4-fold larger than CNRs for the pseudo-(80,140) method. CNRs for the downstream placements were small. It was concluded that the pseudo-switching method with upstream placement is appropriate for reducing metal artifacts.
TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets
Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.
Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.
Purpose Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting âself-calibrationâ was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard (âtrueâ) calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the âselfâ and âtrueâ calibration methods were on the order of 10â3 mmâ1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion The proposed geometric âselfâ calibration provides a means for 3D imaging on general non-circular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced âtask-basedâ 3D imaging methods now in development for robotic C-arms. PMID:26388661
edTPA is a pre-service assessment process designed to determine if a new teacher is ready for the job. edTPA is part of a national movement towards the use of performance assessments in teacher education. As of 2014, 41 states (a) require a state-approved performance assessment like edTPA for program completion or for state licensure and/or stateâ¦
Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%â95% for CBCT images. Conclusion: The experiment
SU-E-J-122: The CBCT Dose Calculation Using a Patient Specific CBCT Number to Mass Density Conversion Curve Based On a Novel Image Registration and Organ Mapping Method in Head-And-Neck Radiation Therapy
Bapst, Blanche, E-mail: blanchebapst@hotmail.com; Lagadec, Matthieu, E-mail: matthieu.lagadec@bjn.aphp.fr; Breguet, Romain, E-mail: romain.breguet@hcuge.ch
SU-E-I-87: Automated Liver Segmentation Method for CBCT Dataset by Combining Sparse Shape Composition and Probabilistic Atlas Construction
Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana
Reliability of a Novel CBCT-Based 3D Classification System for Maxillary Canine Impactions in Orthodontics: The KPG Index
The rate of neutron flow is commonly referred to as a flux. The measurement of neutron fluxes in Skylab was the subject of a proposal by Terry Quist of San Antonio, Texas. This chart describes Quist's experiment, Neutron Analysis, Skylab student experiment ED-76. These measurements were considered important not only by NASA but also by the scientific community for four reasons. High energy neutrons can be harmful to human tissue if they are present in significant quantities. Fluxes of neutrons can damage film and other sensitive experimental equipment in a marner similar to those produced by x-rays or other radiation. Furthermore, neutron fluxes can be used as a calibration source for other space-oriented particle physics experiments. Finally, neutron fluxes can affect sensitive x-ray and gamma-ray astronomy observations. Quist's objectives were to measure the neutron fluxes present in Skylab and, with the assistance of NASA and other physicists, to attempt determination of their origin as well as their energy range or spectrum. This experiment had stimulated interest in further studies of neutron phenomena in space. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
We present a direct comparison between two different techniques for the relative calibration of time transfer between remote time scales when using the signals transmitted by the Global Positioning System (GPS). Relative calibration estimates the delay of equipment or the delay of a time transfer link with respect to reference equipment. It is based on the circulation of some travelling GPS equipment between the stations in the network, against which the local equipment is measured. Two techniques can be considered: first a station calibration by the computation of the hardware delays of the local GPS equipment; second the computation of a global hardware delay offset for the time transfer between the reference points of two remote time scales. This last technique is called a âlinkâ calibration, with respect to the other one, which is a âreceiverâ calibration. The two techniques require different measurements on site, which change the uncertainty budgets, and we discuss this and related issues. We report on one calibration campaign organized during Autumn 2013 between Observatoire de Paris (OP), Paris, France, Observatoire de la Côte d'Azur (OCA), Calern, France, and NERC Space Geodesy Facility (SGF), Herstmonceux, United Kingdom. The travelling equipment comprised two GPS receivers of different types, along with the required signal generator and distribution amplifier, and one time interval counter. We show the different ways to compute uncertainty budgets, leading to improvement factors of 1.2 to 1.5 on the hardware delay uncertainties when comparing the relative link calibration to the relative receiver calibration.
Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fractionmore » frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V{sub 80%} for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5
Gifted students are often underserved because they do not have access to highly challenging curriculum. In October, 2002, Project LOGgED ON (www.scrolldown.com/loggedon/) at University of Virginia received federal funding from the Jacob Javits Act to tackle this issue. Those who were part of the LOGgED ON project developed advanced scienceâ¦
Purpose: Cone-beam CTs (CBCT) obtained from On-Board Imaging Devices (OBI) are increasingly being used for dose calculation purposes in adaptive radiotherapy. Patient and target morphology are monitored and the treatment plan is updated using CBCT. Due to the difference in image acquisition parameters, dose calculated in a CBCT can differ from planned dose. We evaluate the difference between dose calculation in kV CBCT and simulation CT, and the effect of HU-density tables in dose discrepancies Methods: HU values for various materials were obtained using a Catphan 504 phantom for a simulator CT (CTSIM) and two different OBI systems using threemore » imaging protocols: Head, Thorax and Pelvis. HU-density tables were created in the TPS for each OBI image protocol. Treatment plans were made on each Catphan 504 dataset and on the head, thorax and pelvis sections of an anthropomorphic phantom, with and without the respective HU-density table. DVH information was compared among OBI systems and planning CT. Results: Dose calculations carried on the Catphan 504 CBCTs, with and without the respective CT-density table, had a maximum difference of â0.65% from the values on the planning CT. The use of the respective HU-density table decreased the percent differences from planned values by half in most of the protocols. For the anthropomorphic phantom datasets, the use of the correct HU-density table reduced differences by 0.89% on OBI1 and 0.59% on OBI2 for the head, 0.49% on OBI1 for the thorax, and 0.25% on OBI2 for the pelvis. Differences from planned values without HU-density correction ranged from 3.13% (OBI1, thorax) to 0.30% (OBI2, thorax). Conclusion: CT-density tables in the TPS yield acceptable differences when used in partly homogeneous medium. Further corrections are needed when the medium contains pronounced density differences for accurate CBCT calculation. Current difference range (1â3%) can be clinically acceptable.« less
The aims of the study were to describe temporal trends in the number, proportion, and per capita use of diabetes-related emergency department (ED) visits and to examine any racial/ethnic disparity in ED use for diabetes-related reasons. We analyzed the ED portion of the National Hospital Ambulatory Medical Care Survey from 1997 through 2007. Diabetes-related ED visits were identified by International Classification of Diseases, Ninth Revision codes. Descriptive statistics were developed. Weighted linear and logistic regression models were used to determine significance of temporal trends, and multivariate logistic regression was used to examine racial/ethnic disparities. A total of 20.2 million (1.69%; 95% confidence interval [CI], 1.59%-1.78%) ED visits were diabetes-related during the study period. We observed significant increases in the number and proportion of diabetes-related ED visits. Overall, there was a 5.6% relative annual increase in the proportion of ED visits that were diabetes-related during the study period. However, the per capita ED use among the population with diabetes did not change over time (P>.05 for trend). On multivariate analysis, black race (odds ratio, 1.8; 95% CI, 1.7-2.0), Hispanic ethnicity (odds ratio, 1.6; 95% CI, 1.4-1.8), and advancing age were associated with significantly higher odds of having a diabetes-related visit. Despite a marked increase in number and proportion of diabetes-related ED visits during the study period, the per capita use of ED services for diabetes-related visits among the diabetic population remained stable. Copyright © 2012 Elsevier Inc. All rights reserved.
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
This article considers the challenges encountered by a recently appointed assistant programme leader in establishing an identity as a leader of an EdD programme. In discussing literature on the development of the EdD, the article recognizes an existing concern with student identity but highlights a need to consider the development of the EdDâ¦
In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60ââÃââ60âmm2 and 80ââÃââ80âmm2, standard resolution), and a 3D Teeth protocol (FOV: 100ââÃââ90âmm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging fromââ-45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.
Little is known about the population-based burden of ED care for COPD. We analyzed statewide ED surveillance system data to quantify the frequency of COPD-related ED visits, hospital admissions, and comorbidities. In 2008 to 2009 in North Carolina, 97,511 COPD-related ED visits were made by adults ⥠45 years of age, at an annual rate of 13.8 ED visits/1,000 person-years. Among patients with COPD (n = 33,799), 7% and 28% had a COPD-related return ED visit within a 30- and 365-day period of their index visit, respectively. Compared with patients on private insurance, Medicare, Medicaid, and noninsured patients were more likely to have a COPD-related return visit within 30 and 365 days and have three or more COPD-related visits within 365 days. There were no differences in return visits by sex. Fifty-one percent of patients with COPD were admitted to the hospital from the index ED visit. Subsequent hospital admission risk in the cohort increased with age, peaking at 65 to 69 years (risk ratio [RR], 1.41; 95% CI, 1.26-1.57); there was no difference by sex. Patients with congestive heart failure (RR, 1.29; 95% CI, 1.22-1.37), substance-related disorders (RR, 1.35; 95% CI, 1.13-1.60), or respiratory failure/supplemental oxygen (RR, 1.25; 95% CI, 1.19-1.31) were more likely to have a subsequent hospital admission compared with patients without these comorbidities. The population-based burden of COPD-related care in the ED is significant. Further research is needed to understand variations in COPD-related ED visits and hospital admissions.
Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An âidealâ projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used tomore » recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (âdirect methodâ) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (â¼20 RMSE) can achieve 4-fold improvement over the direct method (â¼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation
Purpose: To establish a method to evaluate the dosimetric impact of anatomic changes in head and neck patients during proton therapy by using scatter-corrected cone-beam CT (CBCT) images. Methods: The water equivalent path length (WEPL) was calculated to the distal edge of PTV contours by using tomographic images available for six head and neck patients received photon therapy. The proton range variation was measured by calculating the difference between the distal WEPLs calculated with the planning CT and weekly treatment CBCT images. By performing an automatic rigid registration, six degrees-of-freedom (DOF) correction was made to the CBCT images to accountmore » for the patient setup uncertainty. For accurate WEPL calculations, an existing CBCT scatter correction algorithm, whose performance was already proven for phantom images, was calibrated for head and neck patient images. Specifically, two different image similarity measures, mutual information (MI) and mean square error (MSE), were tested for the deformable image registration (DIR) in the CBCT scatter correction algorithm. Results: The impact of weight loss was reflected in the distal WEPL differences with the aid of the automatic rigid registration reducing the influence of patient setup uncertainty on the WEPL calculation results. The WEPL difference averaged over distal area was 2.9 ± 2.9 (mm) across all fractions of six patients and its maximum, mostly found at the last available fraction, was 6.2 ± 3.4 (mm). The MSE-based DIR successfully registered each treatment CBCT image to the planning CT image. On the other hand, the MI-based DIR deformed the skin voxels in the planning CT image to the immobilization mask in the treatment CBCT image, most of which was cropped out of the planning CT image. Conclusion: The dosimetric impact of anatomic changes was evaluated by calculating the distal WEPL difference with the existing scatter-correction algorithm appropriately calibrated. Jihun Kim, Yang
Software-based dental planning requires digital casts and oftentimes cone-beam computed tomography (CBCT) radiography. However, buying a dedicated model digitizing device can be expensive and might not be required. The present study aimed to assess whether digital models derived from CBCT and models digitized using a dedicated optical device are of comparable accuracy. A total of 20 plaster casts were digitized with eight CBCT and five optical model digitizers. Corresponding models were superimposed using six control points and subsequent iterative closest point matching. Median distances were calculated among all registered models. Data were pooled per scanner and model. Boxplots were generated, and the paired t test, a Friedman test, and a post-hoc Nemenyi test were employed for statistical comparison. Results were found significant at pâ<â0.05. All CBCT devices allowed the digitization of plaster casts, but failed to reach the accuracy of the dedicated model digitizers (pâ<â0.001). Median distances between CBCT and optically digitized casts were 0.064â+â-â0.005Â mm. Qualitative differences among the CBCT systems were detected (Ï 2 â=â78.07, pâ<â0.001), and one CBCT providing a special plaster cast digitization mode was found superior to the competitors (pâ<â0.05). CBCT systems failed to reach the accuracy from optical digitizers, but within the limits of the study, accuracy appeared to be sufficient for digital planning and forensic purposes. Most CBCT systems enabled digitization of plaster casts, and accuracy was found sufficient for digital planning and storage purposes.
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segmentmore » CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT
Purpose: The aim of this work is to propose a general and simple procedure for the calibration and validation of kilo-voltage cone-beam CT (kV CBCT) models against experimental data. Methods: The calibration and validation of the CT model is a two-step procedure: the source model then the detector model. The source is described by the direction dependent photon energy spectrum at each voltage while the detector is described by the pixel intensity value as a function of the direction and the energy of incident photons. The measurements for the source consist of a series of dose measurements in air performedmore » at each voltage with varying filter thicknesses and materials in front of the x-ray tube. The measurements for the detector are acquisitions of projection images using the same filters and several tube voltages. The proposed procedure has been applied to calibrate and assess the accuracy of simple models of the source and the detector of three commercial kV CBCT units. If the CBCT system models had been calibrated differently, the current procedure would have been exclusively used to validate the models. Several high-purity attenuation filters of aluminum, copper, and silver combined with a dosimeter which is sensitive to the range of voltages of interest were used. A sensitivity analysis of the model has also been conducted for each parameter of the source and the detector models. Results: Average deviations between experimental and theoretical dose values are below 1.5% after calibration for the three x-ray sources. The predicted energy deposited in the detector agrees with experimental data within 4% for all imaging systems. Conclusions: The authors developed and applied an experimental procedure to calibrate and validate any model of the source and the detector of a CBCT unit. The present protocol has been successfully applied to three x-ray imaging systems. The minimum requirements in terms of material and equipment would make its implementation
PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patientsâ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1â7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patientsâ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less
Orthodontically induced external root resorption (OIRR) is a pathologic consequence of orthodontic tooth movement. However, the limitations of two-dimensional radiography suggest that cone beam computed tomography (CBCT) with its three-dimensional capabilities might be more suitable to assess OIRR. The aim of this study was to assess in an evidence-based manner data on linear or volumetric OIRR measurements of permanent teeth by means of CBCT, during and/or after the end of orthodontic treatment. Unrestricted electronic and hand searches were performed up to January 2017 in 15 databases. Randomized clinical trials, prospective, and retrospective non-randomized studies assessing OIRR during and/or after orthodontic treatment using CBCT in human patients were included. After duplicate study selection, data extraction, and risk-of-bias assessment according to the Cochrane guidelines, random-effects meta-analyses, followed by subgroup, meta-regression, and sensitivity analyses were also performed in order to evaluate factors that affect OIRR. A total of 33 studies (30 datasets) were included in the qualitative analysis while data from 27 of them were included in the quantitative analysis. Direct comparisons from randomized trials found little to no influence of appliance-related factors on OIRR. Explorative analyses including non-randomized studies found a pooled OIRR of 0.79 mm based on all included studies and 0.86 mm when OIRR was assessed at the end of orthodontic treatment. Statistically significant differences in OIRR were found according to tooth type or jaw, inclusion of extractions, treatment duration, and diagnostic accuracy of the CBCT. Based on the results of this study, CBCT seems to be a reliable tool to examine OIRR during or at the end of orthodontic treatment. Although the average OIRR measured with CBCT seems to lack clinical relevance, there are certain factors that may affect OIRR following orthodontic treatment. Nevertheless, due to data
Purpose: To investigate the feasibility of using nanoparticle markers to validate liver tumor motion together with a deformation field map-based four dimensional (4D) cone-beam computed tomography (CBCT) reconstruction method. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In this method, each phase of the 4D-CBCT is considered as a deformation of a prior CT volume. The DFM is solved by a motion modeling and free-form deformation (MM-FD) technique, using a data fidelity constraint and the deformation energy minimization. For liver imaging, there is low contrast of a liver tumor inmore » on-board projections. A validation of liver tumor motion using implanted gold nanoparticles, along with the MM-FD deformation technique is implemented to reconstruct onboard 4D CBCT liver radiotherapy images. These nanoparticles were placed around the liver tumor to reflect the tumor positions in both CT simulation and on-board image acquisition. When reconstructing each phase of the 4D-CBCT, the migrations of the gold nanoparticles act as a constraint to regularize the deformation field, along with the data fidelity and the energy minimization constraints. In this study, multiple tumor diameters and positions were simulated within the liver for on-board 4D-CBCT imaging. The on-board 4D-CBCT reconstructed by the proposed method was compared with the âground truthâ image. Results: The preliminary data, which uses reconstruction for lung radiotherapy suggests that the advanced reconstruction algorithm including the gold nanoparticle constraint will Resultin volume percentage differences (VPD) between lesions in reconstructed images by MM-FD and âground truthâ on-board images of 11.5% (± 9.4%) and a center of mass shift of 1.3 mm (± 1.3 mm) for liver radiotherapy. Conclusion: The advanced MM-FD technique enforcing the additional constraints from gold nanoparticles, results in improved
Purpose: To estimate and remove the scatter contamination in the acquired projection of cone-beam CT (CBCT), to suppress the shading artifacts and improve the image quality without prior information. Methods: The uncorrected CBCT images containing shading artifacts are reconstructed by applying the standard FDK algorithm on CBCT raw projections. The uncorrected image is then segmented to generate an initial template image. To estimate scatter signal, the differences are calculated by subtracting the simulated projections of the template image from the raw projections. Since scatter signals are dominantly continuous and low-frequency in the projection domain, they are estimated by low-pass filteringmore » the difference signals and subtracted from the raw CBCT projections to achieve the scatter correction. Finally, the corrected CBCT image is reconstructed from the corrected projection data. Since an accurate template image is not readily segmented from the uncorrected CBCT image, the proposed scheme is iterated until the produced template is not altered. Results: The proposed scheme is evaluated on the Catphan©600 phantom data and CBCT images acquired from a pelvis patient. The result shows that shading artifacts have been effectively suppressed by the proposed method. Using multi-detector CT (MDCT) images as reference, quantitative analysis is operated to measure the quality of corrected images. Compared to images without correction, the method proposed reduces the overall CT number error from over 200 HU to be less than 50 HU and can increase the spatial uniformity. Conclusion: An iterative strategy without relying on the prior information is proposed in this work to remove the shading artifacts due to scatter contamination in the projection domain. The method is evaluated in phantom and patient studies and the result shows that the image quality is remarkably improved. The proposed method is efficient and practical to address the poor image quality issue of
Objectives: CBCT systems, with their high precision 3D reconstructions, 1:1 images and accuracy in locating cephalometric landmarks, allows us to evaluate measurements from craniofacial structures, so enabling us to replace the anthropometric methods or bidimensional methods used until now. The aims are to analyse cranio-facial relationships in a sample of patients who had previously undergone a CBCT and create a new 3D cephalometric method for assessing and measuring patients. Study Design: 90 patients who had a CBCT (i-Cat®) as a diagnostic register were selected. 12 cephalometric landmarks on the three spatial planes (X,Y,Z) were defined and 21 linear measurements were established. Using these measurements, 7 triangles were described and analysed. With the sides of the triangles: (CdR-Me-CdL); (FzR-Me-FzL); (GoR-N-GoL); and the Gl-Me distance, the ratios between them were analysed. In addition, 4 triangles in the mandible were measured (body: GoR-DB-Me and GoL-DB-Me and ramus: KrR-CdR-GoR and KrL-CdL-GoL). Results: When analyzing the sides of the CdR-Me-CdL triangle, it was found that the 69.33% of the patients could be considered symmetric. Regarding the ratios between the sides of the following triangles: CdR-Me-CdL, FzR-Me-FzL, GoR-N-GoL and the Gl-Me distance, it was found that almost all ratios were close to 1:1 except between the CdR-CdL side with respect the rest of the sides. With regard to the ratios of the 4 triangles of the mandible, it was found that the most symmetrical relationships were those corresponding to the sides of the body of the mandible and the most asymmetrical ones were those corresponding to the base of such triangles. Conclusions: A new method for assessing cranio-facial relationshps using CBCT has been established. It could be used for diverse purposes including diagnosis and treatment planning. Key words:Craniofacial relationship, CBCT, 3D cephalometry. PMID:23524427
Mohr, Nicholas M.; Miller, Christopher N.; Deitchman, Andrew R.; Castagno, Nicole; Hassebroek, Elizabeth C.; Dhedhi, Adam; Scott-Wittenborn, Nicholas; Grace, Edward; Lehew, Courtney; Kollef, Marin H.
Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon
This study examined the efficacy of emergency department (ED)-based brief interventions (BIs), delivered by a computer or therapist, with and without a post-ED session, on alcohol consumption and consequences over 12 months. Patients (ages 14-20 years) screening positive for risky drinking were randomized to: BI (n = 277), therapist BI (n = 278), or control (n = 281). After the 3-month follow-up, participants were randomized to receive a post-ED BI session or control. Incorporating motivational interviewing, the BIs addressed alcohol consumption and consequences, including driving under the influence (DUI), and alcohol-related injury, as well as other concomitant drug use. The computer BI was an offline, Facebook-styled program. Among 4389 patients screened, 1054 patients reported risky drinking and 836 were enrolled in the randomized controlled trial. Regression models examined the main effects of the intervention conditions (versus control) and the interaction effects (ED condition à post-ED condition) on primary outcomes. The therapist and computer BIs significantly reduced consumption at 3 months, consequences at 3 and 12 months, and prescription drug use at 12 months; the computer BI reduced the frequency of DUI at 12 months; and the therapist BI reduced the frequency of alcohol-related injury at 12 months. The post-ED session reduced alcohol consequences at 6 months, benefiting those who had not received a BI in the ED. A single-session BI, delivered by a computer or therapist in the ED, shows promise for underage drinkers. Findings for the fully automated stand-alone computer BI are particularly appealing given the ease of future implementation. Copyright © 2015 by the American Academy of Pediatrics.
In this essay, Jon Wergin reminds readers of the philosophical and historical foundations of the doctor of education (EdD) degree. He argues that the EdD should be based, in large part, on John Dewey's progressive ideals of democratization and Paulo Freire's concepts of emancipatory education. Drawing on theories of reflective practice,â¦
SU-F-J-22: Lung VolumeVariability Assessed by Bh-CBCT in 3D Surface Image Guided Deep InspirationBreath Hold (DIBH) Radiotherapy for Left-Sided Breast Cancer
The MODIS/MCST (MODIS Characterization Support Team) Status Report contains an outline of the calibration strategy, handbook, and plan. It also contains an outline of the MODIS/MCST action item from the 4th EOS Cal/Val Meeting, for which the objective was to locate potential MODIS calibration targets on the Earth's surface that are radiometrically homogeneous on a scale of 3 by 3 Km. As appendices, draft copies of the handbook table of contents, calibration plan table of contents, and detailed agenda for MODIS calibration working group are included.
Lean manufacturing techniques, first developed by Toyota, can be successfully adapted to help improve processes in your ED. St. Luke's Episcopal Hospital in Houston, has used Lean to reduce median length of stay, frequency of diversions, and the percentage of patients who left before treatment was complete (LBTC). Here's why "Lean" can help improve the performance of your ED: It enables you and your staff to see things from the patient's point of view. Lean tools enable you to view the status of your department in real-time and to compare that status with your performance goals. Exercises help identify areas where your processes break down and determine the most likely solutions.
The aim of this in vitro study was to evaluate how a deviation from the horizontal plane, affects the image quality in two different CBCT-devices. A phantom head SK150 (RANDO, The Phantom Laboratory, Salem, NY, USA) was examined in two CBCT-units: Accuitomo 80 and Veraviewepocs 3D R100 (J. Morita Mfg. Corp. Kyoto, Japan). The phantom head was placed with the hard palate parallel to the horizontal plane and tilted 20 ° backwards. Exposures were performed with different field of views (FOVs), voxel sizes, slice thicknesses and exposure settings. Effective dose was calculated using PCXMC 2.0 (STUK, Helsinki, Finland). Image quality was assessed using contrast-to-noise-ratio (CNR). Region of interest (ROI) was set at three different levels of the mandibular bone and soft tissue, uni- and bilaterally in small and large FOVs, respectively. CNR values were calculated by CT-value and standard deviation for each ROI. Factor analysis was used to analyze the material. Tilting the phantom head backwards rendered significantly higher mean CNR values regardless of FOV. The effective dose was lower in small than in large FOVs and varied to a larger extent between CBCT-devices in large FOVs. Head position can affect the image quality. Tilting the head backward improved image quality in the mandibular region. However, if influenced by other variables e.g. motion artifacts in a clinical situation, remains to be further investigated. Image quality assessed using CNR values to investigate the influence of different patient positions and FOVs.
Huang, Chien-Cheng; Lo, Hong-Chang; Huang, Hsien-Hao; Kao, Wei-Fong; Yen, David Hung-Tsang; Wang, Lee-Min; Huang, Chun-I; Lee, Chen-Hsen
WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment
The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.
Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source ''symmetric'' Demons registration algorithm, a convergence criterion basedmore » on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8{+-}0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6{+-}1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6{+-}0.9) mm compared to rigid registration TRE=(3.6{+-}1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1x1x2 mm{sup 3}). The multiscale implementation based on optimal convergence criteria completed
Canon always keeps the last two generations of XXXDs current in the lineup, and in order to offer a cheaper model, creates the XXXXD, which is mostly based on the third generation back, but with a few updates to bring it in line with the current models, while leveraging as much of the older tech as possible.
Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm à 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.
Arabidopsis enhanced disease susceptibility 1 (EDS1) plays an important role in plant defense against biotrophic and necrotrophic pathogens. The necrotrophic pathogen Verticillium dahliae infection of Gossypium barbadense could lead to Verticillium wilt which seriously reduces the cotton production. Here, we cloned and characterized a G. barbadense homolog of EDS1, designated as GbEDS1. The full-length cDNA of the GbEDS1 gene was obtained by the technique of rapid-amplification of cDNA ends. The open reading frame of the GbEDS1 gene was 1,647 bp long and encoded a protein of 548 amino acids residues. Comparison of the cDNA and genomic DNA sequence of GbEDS1 indicated that this gene contained a single intron and two exons. Like other EDS1s, GbEDS1 contained a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Subcellular localization assay revealed that GbEDS1-green fluorescence protein fusion protein was localized in both cytosol and nucleus. Interestingly, the transcript levels of GbEDS1 were dramatically increased in response to pathogen V. dahliae infection. To investigate the role of GbEDS1 in plant resistance against V. dahliae, a conserved fragment derived from GbEDS1 was used to knockdown the endogenous EDS1 in Nicotiana benthamiana by heterologous virus-induced gene silencing. Our data showed that silencing of NbEDS1 resulted in increased susceptibility to V. dahliae infection in N. benthamiana, suggesting a possible involvement of the novelly isolated GbEDS1 in the regulation of plant defense against V. dahliae.
Purpose: To investigate the feasibility of using structure-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and a free-form deformation (GMM-FD) technique, using data fidelity constraint and the deformation energy minimization. In thismore » study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and âground-truthâ on board 4D-CBCT. Results: Among 6 different XCAT scenarios corresponding to respirational and anatomical changes from planning CT to on-board using single 30° on-board projections, the VPD/COMS for SMM-WFD was reduced to 10.64±3.04%/1.20±0.45mm from 21.72±9.24%/1.80±0.53mm for GMM-FD. Using 15° orthogonal projections, the VPD
Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a âself-calibrationâ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHMâe.g. on the CBCT bench, FWHMââ=ââ0.86âmm for conventional calibration compared to 0.65âmm for self-calibration (pââ<ââ0.001). Similar improvements were measured in RPEâe.g. on the robotic C-arm, RPEââ=ââ0.73âmm for conventional calibration compared to 0.55âmm for self-calibration (pââ<ââ0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is
Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4
"The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
The ReflectED programme was developed by Rosendale Primary School to improve pupils' metacognition--their ability to think about and manage their own learning. This includes the skills of setting and monitoring goals, assessing progress, and identifying personal strengths and challenges. ReflectED consists of 28, weekly, half-hour lessons, whichâ¦
Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less
Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varianâs On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens dosesmore » were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT.« less
We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.
The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.
Cone beam computed tomography (CBCT), which provides a lower dose, lower cost alternative to conventional CT, is being used with increasing frequency in the practice of oral and maxillofacial radiology. This study provides comparative measurements of effective dose for three commercially available, large (12'') field-of-view (FOV), CBCT units: CB Mercuray, NewTom 3G and i-CAT. Thermoluminescent dosemeters (TLDs) were placed at 24 sites throughout the layers of the head and neck of a tissue-equivalent human skull RANDO phantom. Depending on availability, the 12'' FOV and smaller FOV scanning modes were used with similar phantom positioning geometry for each CBCT unit. Radiation weighted doses to individual organs were summed using 1990 (E(1990)) and proposed 2005 (E(2005 draft)) ICRP tissue weighting factors to calculate two measures of whole-body effective dose. Dose as a multiple of a representative panoramic radiography dose was also calculated. For repeated runs dosimetry was generally reproducible within 2.5%. Calculated doses in microSv [corrected] (E(1990), E(2005 draft)) were NewTom3G (45, 59), i-CAT (135, 193) and CB Mercuray (477, 558). These are 4 to 42 times greater than comparable panoramic examination doses (6.3 microSv [corrected] 13.3 mSv). Reductions in dose were seen with reduction in field size and mA and kV technique factors. CBCT dose varies substantially depending on the device, FOV and selected technique factors. Effective dose detriment is several to many times higher than conventional panoramic imaging and an order of magnitude or more less than reported doses for conventional CT.
The aim of this study was to analyze the influence of filters (algorithms) to improve the image of Cone Beam Computed Tomography (CBCT) in diagnosis of osteolytic lesions of the mandible, in order to establish the protocols for viewing images more suitable for CBCT diagnostics. 15 dry mandibles in which perforations were performed, simulating lesions, were submitted to CBCT examination. Two examiners analyzed the images, using filters to improve image Hard, Normal, and Very Sharp, contained in the iCAT Vision software, and protocols for assessment: axial; sagittal and coronal; and axial, sagittal and coronal planes simultaneously (MPR), on two occasions. The sensitivity and specificity (validity) of the cone beam computed tomography (CBCT) have been demonstrated as the values achieved were above 75% for sensitivity and above 85% for specificity, reaching around 95.5% of sensitivity and 99% of specificity when we used the appropriate observation protocol. It was concluded that the use of filters (algorithms) to improve the CBCT image influences the diagnosis, due to the fact that all measured values were correspondingly higher when it was used the filter Very Sharp, which justifies its use for clinical activities, followed by Hard and Normal filters, in order of decreasing values.
PurposeThis study was designed to analyze retrospectively the performance of cone-beam computed tomography (CBCT) hepatic arteriography in depicting tumors and their feeders and to investigate the related determining factors in chemoembolization for hepatocellular carcinoma (HCC).MethodsEighty-six patients with 142 tumors satisfying the imaging diagnosis criteria of HCC were included in this study. The performance of CBCT hepatic arteriography for chemoembolization per tumor and per patient was evaluated using maximum intensity projection images alone (MIP analysis) or MIP combined with multiplanar reformation images (MIP + MPR analysis) regarding the following three aspects: tumor depiction, confidence of tumor feeder detection, and trackability of tumor feeders.more » Tumor size, tumor enhancement, tumor location, number of feeders, diaphragmatic motion, portal vein enhancement, and hepatic artery to parenchyma enhancement ratio were regarded as potential determining factors.ResultsTumors were depicted in 125 (88.0 %) and 142 tumors (100 %) on MIP and MIP + MPR analysis, respectively. Imaging performances on MIP and MIP + MPR analysis were good enough to perform subsegmental chemoembolization without additional angiographic investigation in 88 (62.0 %) and 128 tumors (90.1 %) on per-tumor basis and in 43 (50 %) and 73 (84.9 %) on per-patient basis, respectively. Significant determining factors for performance in MIP + MPR analysis on per tumor basis were tumor size (p = 0.030), tumor enhancement (0.005), tumor location (p = 0.001), and diaphragmatic motion (p < 0.001).ConclusionsCBCT hepatic arteriography provided sufficient information for subsegmental chemoembolization by depicting tumors and their feeders in the vast majority of patients. Combined analysis of MIP and MPR images was essential to enhance the performance of CBCT hepatic arteriography.« less
Objectives: To (1) compare pathological findings related to the mandibular third molar in panoramic images (PAN) and CBCT; (2) estimate the frequency of removals if pathological findings were indicative; and (3) assess factors in PAN associated with resorption and marginal bone loss at the second molar as observed in CBCT. Methods: 379 mandibular third molars were examined with PAN and CBCT. Four observers registered resorption and marginal bone loss at the second molar and increased periodontal space at the third molar in both imaging modalities. Agreement between PAN and CBCT, frequency of removals based on pathological findings in either of the two modalities and interobserver reproducibility was calculated. Logistic regression analyses assessed factors in PAN, which could predict marginal bone loss and resorption observed in CBCT. Results: Agreement between PAN and CBCT: resorption 54â74%; marginal bone loss 66â85%; and increased periodontal space 92â97%. Removals based on CBCT and PAN: 58â71% and 36â65%. Interobserver percentage accordance and kappa values ranged from 57 to 98% and 0.10â0.91 for PAN and 61â97% and 0.22â0.78 for CBCT, respectively. Mesioangulated/horizontally positioned third molars were associated with marginal bone loss [odds ratio (OR)â=â7.0â31.3; pâ<â0.001] and resorption (ORâ=â2.9â35.6; pâ<â0.001) in CBCT. Overprojection between the third and the second molars in PAN predicted resorption observed in CBCT (ORâ=â5.6â21.2; pâ<â0.001). Conclusions: Pathology associated with the third molar is more often observed in CBCT than in PAN. More third molars would be removed if pathological findings are based on CBCT. Mesioangulated/horizontally positioned third molars overprojecting the cervical/root part of the second molar in PAN are strongly associated with pathology observed in CBCT. PMID:27681861
CBCT is a widely applied imaging modality in dentistry. It enables the visualization of high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from multidetector CT (MDCT) data sets. However, there are crucial differences between MDCT and CBCT, which complicates the use of quantitative gray values (GVs) for the latter. From experimental as well as clinical research, it can be seen that great variability of GVs can exist on CBCT images owing to various reasons that are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for GV variability, it can be postulated that the quantitative use of GVs in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of the bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods that are commonly used in micro-CT and histology. PMID:25315442
A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions
Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.
Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less
PV Calibration Insights PV Calibration Insights The Photovoltaic (PV) Calibration Insights blog will provide updates on the testing done by the NREL PV Device Performance group. This NREL research group measures the performance of any and all technologies and sizes of PV devices from around the world
We aim to evaluate the effectiveness of a broadly inclusive, comparatively low intensity intervention linking ED patients to a primary care home. This retrospective cohort study evaluated ED patients referred for primary care linkage in a large, urban, academic ED. A care coordination specialist performed a brief interview to gauge access barriers and provide a clinic referral with optional scheduling assistance. Data were abstracted from program records and the electronic medical record. The primary outcome was the proportion of referred individuals who attended at least one primary care appointment. Secondary outcomes included return ED encounters within one year, and factors associated with linkage outcomes. There were 2142 referrals made for 2064 patients; 1688/2142 accepted assistance. Linkage was successful for 1059/1688 (63%, CI95 60% to 65%). Among patients accepting assistance, those without successful linkage were younger (41 vs 45years, difference 3years, CI95 2 to 3), more often male (62% vs 55%,difference 7%, CI95 2% to 12%), and less likely to have a chronic medical condition (37% vs 45%, difference 8%; CI95 3% to 12%) or to have had an appointment scheduled within two weeks (26% vs 33%, difference 7%, CI95 2% to 12%). Insurance status and self-reported barriers to care were not associated with linkage success. Patterns of subsequent ED use were similar, regardless of referral status or linkage outcome. Low intensity, broadly inclusive, ED care coordination linked nearly 50% of patients referred for intervention, and two-thirds of willing participants, with a primary care home. Copyright © 2018 Elsevier Inc. All rights reserved.
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.
SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)
Purpose: The use of non-circular scanning trajectories with optimization-basedreconstruction algorithms can be used in conjunction with non-planaracquisition geometries for axial field-of-view (FOV) extension incone-beam CT (CBCT). To evaluate the utility of these trajectories,quantitative image quality metrics should be evaluated. Low-contrastresolution (LCR) and CT number accuracy are significant challenges forCBCT. With unprecedented axial coverage provided by thesetrajectories, measuring such metrics throughout the axial range iscritical. There are currently no phantoms designed to measurelow-contrast resolution over such an extended volume. Methods: The CATPHAN (The Phantom Laboratory, Salem NY) is the current standardfor image quality evaluation. While providing several useful modulesfor different evaluationmore » metrics, each module was designed to beevaluated in a single slice and not for comparison across axialpositions. To characterize the LCR and HU accuracy over an extendedaxial length, we have designed and built a phantom with evaluationmodules at multiple and adjustable axial positions. Results: The modules were made from a cast polyurethane resin. Holes rangingfrom 1/8 to 5/8 inch were added at a constant radius from the modulecenter into which rods of two different plastic materials were pressedto provide two nominal levels of contrast (1.0% and 0.5%). Largerholes were bored to accept various RMI plugs with known electrondensities for HU accuracy evaluation. The modules can be inserted intoan acrylic tube long enough to cover the entire axial FOV and theirpositions adjusted to desired evaluation points. Conclusion: This phantom allows us to measure the LCR and HU accuracy across theaxial coverage within a single acquisition. These metrics can be usedto characterize the impact different trajectories and reconstructionparameters have on clinically relevant image quality performancemetrics. Funding was provided in part by Varian Medical Systems and
To compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours. Patients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10-20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported. Forty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = -9.45, t = -3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %). CBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.
Suicide is a leading cause of deaths in the United States. Although the emergency department (ED) is an opportune setting for initiating suicide prevention efforts, ED-initiated suicide prevention interventions remain underdeveloped. To determine whether an ED-initiated intervention reduces subsequent suicidal behavior. This multicenter study of 8 EDs in the United States enrolled adults with a recent suicide attempt or ideation and was composed of 3 sequential phases: (1) a treatment as usual (TAU) phase from August 2010 to December 2011, (2) a universal screening (screening) phase from September 2011 to December 2012, and (3) a universal screening plus intervention (intervention) phase from July 2012 to November 2013. Screening consisted of universal suicide risk screening. The intervention phase consisted of universal screening plus an intervention, which included secondary suicide risk screening by the ED physician, discharge resources, and post-ED telephone calls focused on reducing suicide risk. The primary outcome was suicide attempts (nonfatal and fatal) over the 52-week follow-up period. The proportion and total number of attempts were analyzed. A total of 1376 participants were recruited, including 769 females (55.9%) with a median (interquartile range) age of 37 (26-47) years. A total of 288 participants (20.9%) made at least 1 suicide attempt, and there were 548 total suicide attempts among participants. There were no significant differences in risk reduction between the TAU and screening phases (23% vs 22%, respectively). However, compared with the TAU phase, patients in the intervention phase showed a 5% absolute reduction in suicide attempt risk (23% vs 18%), with a relative risk reduction of 20%. Participants in the intervention phase had 30% fewer total suicide attempts than participants in the TAU phase. Negative binomial regression analysis indicated that the participants in the intervention phase had significantly fewer total suicide attempts
The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital CAN bus on the Toshiba Infinix C-Arm system which is saved in a log file by the real-time skin-dose tracking system (DTS) we previously developed. The x-ray beam spectra on this machine were simulated using BEAMnrc. These spectra were compared to those determined by SpekCalc and validated through measured percent-depth-dose (PDD) curves and half-value-layer (HVL) measurements. We simulated CBCT procedures in DOSXYZnrc for a CTDI head phantom and compared the surface dose distribution with that measured with Gafchromic film, and also for an SK150 head phantom and compared the lens dose with that measured with an ionization chamber. Both methods demonstrated good agreement. Organ dose calculated for a simulated neuro-interventional-procedure using DOSXYZnrc with the Zubal CT voxel phantom agreed within 10% with that calculated by PCXMC code for most organs. To calculate the lens dose in a neuro-interventional procedure, we developed a library of normalized lens dose values for different projection angles and kVp's. The total lens dose is then calculated by summing the values over all beam projections and can be included on the DTS report at the end of the procedure.
Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT.
Lyra, Carina Maria; Delai, Débora; Pereira, Keila Cristina Rausch; Pereira, Guy Martins; Pasternak Júnior, Bráulio; Oliveira, César Augusto Pereira
Erectile dysfunction is a common ailment in middle-aged and old men. The management of ED has entered a new stage since sildenafil was used to treat ED in 1998. Sildenafil became the first-line treatment for its efficacy and safety. In recent years, new PDE5 inhibitors--vardenafil and tadalafil came into market in succession, providing more options available for oral therapy. This review is about the development of preclinical and clinical medicine research on the three PDE5 inhibitors, and provide information for clinical choices.
The present study Multiple Intelligence and Digital Learning Awareness of prospective B.Ed teachers was probed to find the relationship between Multiple Intelligence and Digital Learning Awareness of Prospective B.Ed Teachers. Data for the study were collected using self made Multiple Intelligence Inventory and Digital Learning Awareness Scale.â¦
Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study.
The aim of this study was to evaluate the mesiobuccal root of maxillary first molars, according to the root canal configuration, prevalence and location of isthmuses at 3 and 6 mm from the apex, comparing cone-beam computed tomography (CBCT) analysis and cross sectioning of roots by thirds. Images of the mesiobuccal root of 100 maxillary first molars were acquired by CBCT and then roots were cross-sectioned into two parts, starting at 3 mm from the apex. Data were recorded and analyzed according to Weine's classification for root canal configuration, and Hsu and Kim's classification for isthmuses. In the analysis of CBCT images, 8 root canals were classified as type I, 57 as type II, 35 as type III. In the cross-sectioning technique, 19 root canals were classified as type I, 60 as type II, 20 as type III and 1 as type IV. The classification of isthmuses was predominantly type I in both CBCT and cross-sectioning evaluations for sections at 3 mm from the apex, while for sections at 6 mm from the apex, the classification of isthmuses was predominantly types V and II in CBCT and cross-sectioning evaluations, respectively. The cross-sectioning technique showed better results in detection of the internal morphology of root canals than CBCT scanning.
Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca
Image registration of preprocedural contrast-enhanced CTs to intraprocedual cone-beam computed tomography (CBCT) can provide additional information for interventional liver oncology procedures such as transcatheter arterial chemoembolisation (TACE). In this paper, a novel similarity metric for gradient-based image registration is proposed. The metric relies on the patch-based computation of histograms of oriented gradients (HOG) building the basis for a feature descriptor. The metric was implemented in a framework for rigid 3D-3D-registration of pre-interventional CT with intra-interventional CBCT data obtained during the workflow of a TACE. To evaluate the performance of the new metric, the capture range was estimated based on the calculation of the mean target registration error and compared to the results obtained with a normalized cross correlation metric. The results show that 3D HOG feature descriptors are suitable as image-similarity metric and that the novel metric can compete with established methods in terms of registration accuracy
Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca
The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.
Nagy, Eszter; Apfaltrer, Georg; Riccabona, Michael; Singer, Georg; Stücklschweiger, Georg; Guss, Helmuth; Sorantin, Erich
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
We sought to determine whether an emergency department (ED) pharmacist could aid in the monitoring and correction of inappropriate empiric antibiotic selection for urinary tract infections in an outpatient ED population. Urine cultures with greater than 100 000 CFU/mL bacteria from the University of Utah Emergency Department over 1 year (October 2011-Sept 2012) were identified using our electronic medical record system. Per ED protocol, an ED pharmacist reviews all cultures and performs a chart review of patient symptoms, diagnosis, and discharge antibiotics to determine whether the treatment was appropriate. A retrospective review of this process was performed to identify how often inappropriate treatment was recognized and intervened on by an ED pharmacist. Of the 180 cultures included, a total of 42 (23%) of empiric discharge treatments were considered inappropriate and required intervention. In 35 (83%) of 42 patients, the ED pharmacist was able to contact the patient and make appropriate changes; the remaining 7 patients were unable to be contacted, and no change could be made in their treatment. A chart review of all urine cultures with greater than 100 000 CFU/mL performed by an ED pharmacist helped identify inappropriate treatment in 23% of patients discharged to home with the diagnosis of urinary tract infection. Of these patients who had received inappropriate treatment, an ED pharmacist was able to intervene in 83% of cases. These data highlight the role of ED pharmacists in improving patient care after discharge. Copyright © 2016 Elsevier Inc. All rights reserved.
Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420
Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration
Estimating 4D-CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy.
Zechner, A.; Stock, M.; Kellner, D.; Ziegler, I.; Keuschnigg, P.; Huber, P.; Mayer, U.; Sedlmayer, F.; Deutschmann, H.; Steininger, P.
Development and Validation of the Agency for Healthcare Research and Quality Measures of Potentially Preventable Emergency Department (ED) Visits: The ED Prevention Quality Indicators for General Health Conditions.
TH-CD-202-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Evaluation of the Use of Direct Electron Density CT Images in Radiation Therapy
Purpose: To demonstrate the feasibility of a CBCT-based on-site simulation, planning, and delivery (OSPD) for whole brain radiotherapy, in which all steps from imaging, planning to treatment delivery are performed at the treatment unit in one appointment time slot. This work serves as the proof of concept for future OSPD single fraction radiation therapy. Methods: An integrated on-site imaging, planning and delivery workflow was developed and tested for whole brain radiotherapy. An automated two-opposed-oblique-beam plan is created by utilizing the treatment planning system scripting and simple field-in-field IMRT. The IMRT plan is designed with maximum 8 control points to covermore » the target volume consisting of the brain to C1/C2 of the spinal cord, with dose homogeneity criteria from â5% to +7% of the prescription dose. Due to inaccuracy of reconstructed Hounsfield unit numbers in CBCT images, the dose distribution is calculated with non-heterogeneity correction introducing only clinically insignificant dose discrepancy. A coherent and synchronized workflow was designed for a team of attending physician, physicist, therapists, and dosimetrist to work closely with the ability to quickly modify, approve, and implement the treatment. Results: Thirty-one patients have been treated with this OSPD treatment, without compromising the plan quality compared to our regular clinically used parallel apposed 2D plans. The average time for these procedures are 48.02 ±11.55 minutes from the time patient entered the treatment room until s/he exited, and 35.09 ±10.35 minutes from starting CBCT until last beam delivered. This time duration is comparable to the net time when individual tasks are summed up during our regular CT- based whole brain planning and delivery. Conclusions: The OSPD whole brain treatment has been tested to be clinically feasible. The next step is to further improve the efficiency and to streamline the workflow. Other disease sites will be also
SU-E-J-89: Comparative Analysis of MIM and Velocityâs Image Deformation Algorithm Using Simulated KV-CBCT Images for Quality Assurance
Onboard cone-beam CT (CBCT) has been widely used in image guided radiation therapy. However, the longitudinal coverage is only 15.5âcm in the pelvis scan mode. As a result, a single CBCT scan cannot cover the planning target volume in the longitudinal direction for over 80% of the patients. The common approach is to use double- or multiple-circular scans and then combine multiple CBCT volumes after reconstruction. However it raises concerns regarding doubled imaging dose at the imaging beam junctions due to beam divergence. In this work, we present a new method, DSCS (Dual Scan with Complementary Shifts), to address the CBCT coverage problem using a pair of complementary circular scans. In DSCS, two circular scans were performed at 39.5âcm apart longitudinally. In the superior scan, the detector panel was offset by 16âcm to the left, 15âcm to the inferior. In the inferior scan, the detector panel was shifted 16âcm to the right and 15âcm to the superior. The effective imaging volume is 39.5âcm longitudinally with a 45âcm lateral field-of-view (FOV). Half beam blocks were used to confine the imaging radiation inside the volume of interest. A new image reconstruction algorithm was developed, based on the Feldkamp-Davis-Kress cone-beam CT reconstruction algorithm, to support the DSCS scanning geometry. Digital phantom simulations were performed to demonstrate the feasibility of DSCS. Physical phantom studies were performed using an anthropomorphic phantom on a commercial onboard CBCT system. With basic scattering corrections, the reconstruction results were acceptable. Other issues, including the discrepancy in couch vertical at different couch longitudinal positions, and the inaccuracy in couch table longitudinal movement, were manually corrected during the reconstruction process. In conclusion, the phantom studies showed that, using DSCS, a 39.5âcm longitudinal coverage with a 45âcm FOV was accomplished. The efficiency of imaging dose usage was
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, âtime is brainâ in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a âone-stop-shopâ in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac
Two U.S. Department of Education (ED) systems for establishing the initial eligibility and monitoring the performance of postsecondary institutions that participate in ED financial assistance programs were assessed. The evaluation was designed to describe and evaluate the eligibility and certification functions of ED's Eligibility and Agencyâ¦
Through ExpandED Options by TASC, New York City high school students get academic credit for learning career-related skills that lead to paid summer jobs. Too many high school students--including those most likely to drop out--are bored or see classroom learning as irrelevant. ExpandED Options students live the connection between mastering newâ¦
In the timeline you mentioned, it's color-coded for processor generation. Look again, and you can see the trickle-down effect.
Physician screening is one of many front-end interventions being implemented to improve emergency department (ED) efficiency. We aimed to quantify the operational and financial impact of this intervention at an urban tertiary academic center. We conducted a 2-year before-after analysis of a physician screening system at an urban tertiary academic center with 90 000 annual visits. Financial impact consisted of the ED and inpatient revenue generated from the incremental capacity and the reduction in left without being seen (LWBS) rates. The ED and inpatient margin contribution as well as capital expenditure were based on available published data. We summarized the financial impact using net present value of future cash flows performing sensitivity analysis on the assumptions. Operational outcome measures were ED length of stay and percentage of LWBS. During the first year, we estimate the contribution margin of the screening system to be $2.71 million and the incremental operational cost to be $1.86 million. Estimated capital expenditure for the system was $1 200 000. The NPV of this investment was $2.82 million, and time to break even from the initial investment was 13 months. Operationally, despite a 16.7% increase in patient volume and no decrease in boarding hours, there was a 7.4% decrease in ED length of stay and a reduction in LWBS from 3.3% to 1.8%. In addition to improving operational measures, the implementation of a physician screening program in the ED allowed for an incremental increase in patient care capacity leading to an overall positive financial impact. Copyright © 2012 Elsevier Inc. All rights reserved.
A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.
Does additional cone beam computed tomography decrease the risk of inferior alveolar nerve injury in high-risk cases undergoing third molar surgery?Does CBCT decrease the risk of IAN injury?
Topographic relationship between root apex of mesially and horizontally impacted mandibular third molar and lingual plate: cross-sectional analysis using CBCT
Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.
Objectives: To assess the in vitro diagnostic ability of CBCT images using seven different display types in the detection of recurrent caries. Methods: Our study comprised 128 extracted human premolar and molar teeth. 8 groups each containing 16 teeth were obtained as follows: (1) Black Class I (Occlusal) amalgam filling without caries; (2) Black Class I (Occlusal) composite filling without caries; (3) Black Class II (Proximal) amalgam filling without caries; (4) Black Class II (Proximal) composite filling without caries; (5) Black Class I (Occlusal) amalgam filling with caries; (6) Black Class I (Occlusal) composite filling with caries; (7) Black Class II (Proximal) amalgam filling with caries; and (8) Black Class II (Proximal) composite filling with caries. Teeth were imaged using 100âÃâ90âmm field of view at three different voxel sizes of a CBCT unit (Planmeca ProMax® 3D ProFaceâ¢; Planmeca, Helsinki, Finland). CBCT TIFF images were opened and viewed using custom-designed software for computers on different display types. Intra- and interobserver agreements were calculated. The highest area under the receiver operating characteristic curve (Az) values for each image type, observer, reading and restoration were compared using z-tests against Azâ=â0.5. The significance level was set at pâ=â0.05. Results: We found poor and moderate agreements. In general, Az values were found when software and medical diagnostic monitor were utilized. For Observer 2, Az values were statistically significantly higher when software was used on medical monitor [pâ=â0.036, pâ=â0.015 and pâ=â0.002, for normal-resolution mode (0.200âmm3 voxel size), high-resolution mode (0.150âmm3 voxel size) and low-resolution mode (0.400âmm3 voxel size), respectively]. No statistically significant differences were found among other display types for all modes (pâ>â0.05). In general, no difference was found among 3 different voxel sizes (pâ>â0.05). In general
Purpose: To develop a Hessian-based norm penalty for cone-beam CT (CBCT) reconstruction that has a similar ability in suppressing noise as the total variation (TV) penalty while avoiding the staircase effect and better preserving low-contrast objects. Methods: We extended the TV penalty to a Hessian-based norm penalty based on the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The objective function was constructed using the penalized weighted least-square (PWLS) principle. An effective algorithm was developed to minimize the objective function using a majorization-minimization (MM) approach. We evaluated and compared the proposed penalty with the TV penaltymore » on a CatPhan 600 phantom and an anthropomorphic head phantom, each acquired at a low-dose protocol (10mA/10ms) and a high-dose protocol (80mA/12ms). For both penalties, contrast-to-noise (CNR) in four low-contrast regions-of-interest (ROIs) and the full-width-at-half-maximum (FWHM) of two point-like objects in constructed images were calculated and compared. Results: In the experiment of CatPhan 600 phantom, the Hessian-based norm penalty has slightly higher CNRs and approximately equivalent FWHM values compared with the TV penalty. In the experiment of the anthropomorphic head phantom at the low-dose protocol, the TV penalty result has several artificial piece-wise constant areas known as the staircase effect while in the Hessian-based norm penalty the image appears smoother and more similar to that of the FDK result using the high-dose protocol. Conclusion: The proposed Hessian-based norm penalty has a similar performance in suppressing noise to the TV penalty, but has a potential advantage in suppressing the staircase effect and preserving low-contrast objects. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086
Introduction: The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). Methods and Materials: A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups (n=13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukeyâs post hoc tests were used for two-by-two comparisons. Results: Gates-Glidden drills with hand files removed significantly more (P<0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems (P>0.05). Conclusion: The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls. PMID:28179920
Calibrated solar radiometer intercepts allow spectral optical depths to be determined for days with intermittently clear skies. This is of particular importance on satellite sensor calibration days that are cloudy except at the time of image acquisition. This paper describes the calibration of four solar radiometers using the Langley-Bouguer technique for data collected on days with a clear, stable atmosphere. Intercepts are determined with an uncertainty of less than six percent, corresponding to a maximum uncertainty of 0.06 in optical depth. The spread of voltage intercepts calculated in this process is carried through three methods of radiometric calibration of satellite sensors to yield an uncertainty in radiance at the top of the atmosphere of less than one percent associated with the uncertainty in solar radiometer intercepts for a range of ground reflectances.
The purpose of this study was to compare the prevalence of apical periodontitis (AP) on individual roots of teeth with irreversible pulpitis viewed with periapical (PA) radiographs and cone-beam computed tomography (CBCT) scans. PA radiographs and CBCT scans were taken of 138 teeth in 130 patients diagnosed with irreversible pulpitis (symptomatic and asymptomatic). Two calibrated examiners assessed the presence or absence of AP lesions by analyzing the PA and CBCT images. A consensus was reached in the event of any disagreement. The data were analyzed using the hypothesis test, and significance was set at P ⤠.05. Three hundred seven paired roots were assessed with both PA and CBCT images. A comparison of the 307 paired roots revealed that AP lesions were present in 10 (3.3%) and absent in 297 (96.7%) pairs of roots when assessed with PA radiography. When the same 307 sets of roots were assessed with CBCT scans, AP lesions were present in 42 (13.7%) and absent in 265 (86.3%) paired roots. The prevalence of AP lesions detected with CBCT was significantly higher in the symptomatic group compared with the asymptomatic group (P < .05). An additional 22 roots were identified with CBCT alone. The present study highlights the advantages of using CBCT for detecting AP lesions, especially in teeth with symptomatic irreversible pulpitis. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A 2005 study examined emergency department (ED) utilization by homeless patients in the United States. Within the following 5 years, unemployment increased by 5%. The objective was to analyze changes in ED utilization between 2005 and 2010 by homeless patients and compare with nonhomeless visits. Data from the 2010 National Hospital Ambulatory Medical Care Survey were evaluated. Approximately 679854 visits were made by homeless patients, the majority of which were made by men (72.3%) and patients between the ages of 45 and 64 (50.5%). Homeless patients were twice as likely to be uninsured. ED visits by homeless patients had increased by 44% during the 5-year period. Arrival to the ED by ambulance increased by 14% between the study years, and homeless patients were less likely to be admitted. The number of visits by homeless patients in the ED increased proportionally to an overall increase in ED visits between 2005 and 2010. Copyright © 2016 Elsevier Inc. All rights reserved.
A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction
Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.
Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min
The vast majority of the DSLR market in terms of units sold over the past decade or so has been the entry level DSLR market. Even in terms of gross revenue there are enough units of $400-800 entry level DSLRs sold to swamp the gross revenue generated by the $6,000-$7,000 flagship models from the same manufacturers. Manufacturers, including Canon, have used a couple of strategies to try and maximize their share of the entry level/lower priced segment of the market:
Background The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. Material and Methods All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. Results 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Conclusions Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıtâs cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words:Root fracture, CBCT, Epidemiolog. PMID:29670714
In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were â¤Â 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. Â
Estimating 4D CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy
To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less
Purpose: In our clinic, the planning CT is used for definitive and boost low-dose-rate (LDR) brachytherapy treatments to determine the ultrasound volume in the operating room (OR) at the time of the implant. While the CT overestimation of OR volume is known, a larger estimation discrepancy has been observed for boost treatments. A possible reason is the prostate size reduction during EBRT for boost patients. Since cone-beam CT (CBCT) is often used as routine imaging guidance of EBRT, this prostate volume change may be captured. This study investigates if CBCT taken during EBRT includes the volume change information and thereforemore » beats CT in estimating the prostate OR volumes. Methods: 9 prostate patients treated with EBRT (45Gy in 1.8Gy per fractions to the whole pelvis) and I-125 seed implants (108Gy) were involved in this study. During EBRT, CBCT image guidance was performed on a weekly basis. For each patient, the prostate volumes on the first and the last available CBCT images were manually contoured by a physician. These volumes were then compared to each other and with the contoured volumes from the planning CT and from the ultrasound images in the OR. Results: The first and the last CBCT images did not show significant prostate volume change. Their average +/â standard deviation of prostate volumes were 24.4cc+/â14.6cc and 29.9cc+/â16.1cc, respectively (T-test p=0.68). The ratio of the OR volume to the last CBCT (0.71+/â0.21) was not significantly different from the ratio of OR volumes to the planning CT (0.61+/â0.13) (p=0.25). Conclusion: In this study, CBCT does not show significant prostate volume changes during EBRT. CBCT and CT volumes are quite consistent and no improvement of volume estimation using CBCT is observed. The advantage of CBCT as a replacement of CT for volume study of boost LDR brachytherapy is limited.« less
Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the
To examine the relationship between chronic periodontal disease (CPD) and ED, the interview sheet including the CPD self-checklist (CPD score) and the five-item version of the International Index of Erectile Function (IIEF-5) was distributed to 300 adult men who received a comprehensive dental examination. Statistical analyses were performed by the Spearman's rank correlation coefficient and other methods. Statistical significance was accepted at the level of P<0.05. The interview sheets were collected from 88 men (response rate 29.3%, 50.9±16.6 years old). There was a statistically significant correlation between the CPD score and the presence of ED (P=0.0415). The results in the present study suggest that ED is related to the damage caused by endothelial dysfunction and the systematic inflammatory changes associated with CPD. The present study also suggests that dental health is important as a preventive medicine for ED.
Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.
Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT wasmore » prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be
Objectives: The aim was to compare the intensity of artefacts in CBCT images caused by different percentages of radio-opacifying material in composite simulation models of implants. Titanium and zirconia models of implants were used as a reference for the evaluation of the intensity of artefacts. Methods: Seven different percentages of radio-opacifying BaAlSiO2 fillers were added to composite resin to fabricate seven step wedges and simulation models of implants. Titanium and zirconia simulation models of implants were also fabricated. Aluminium step wedge was used as a reference for the measurement of grey values in intraoral radiographs. Step wedges were exposed with a Planmeca Intra X-ray machine (Planmeca Oy, Helsinki, Finland). All composite, titanium and zirconia simulation models of implants were exposed with a SCANORA® 3D dental X-ray machine (Soredex, Tuusula, Finland). Images and grey values were analysed with ImageJ software (National Institutes of Health, Bethesda, MD). To demonstrate possible artefacts between all the simulation models of implants, the images were also visually compared with each other using ImageJ software. Results: Artefacts were clearly present in CBCT images caused by titanium and zirconia and when the composite material consisted at least 20% BaAlSiO2. The intensity of artefacts increased when the radio-opacity of the composite material increased. Conclusions: Materials containing less radio-opacity produce less pronounced artefacts. The cut-off point for artefacts is at 20% radio-opaque filling material in composite material. PMID:25283364
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authorsâ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated
Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformedmore » CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and itâs suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector
Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (â¼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (â¼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (â¼0.5s). Note that the priormore » 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for
BACKGROUND: There are few data regarding mechanical ventilation and ARDS in the ED. This could be a vital arena for prevention and treatment. METHODS: This study was a multicenter, observational, prospective, cohort study aimed at analyzing ventilation practices in the ED. The primary outcome was the incidence of ARDS after admission. Multivariable logistic regression was used to determine the predictors of ARDS. RESULTS: We analyzed 219 patients receiving mechanical ventilation to assess ED ventilation practices. Median tidal volume was 7.6 mL/kg predicted body weight (PBW) (interquartile range, 6.9-8.9), with a range of 4.3 to 12.2 mL/kg PBW. Lung-protective ventilation was used in 122 patients (55.7%). The incidence of ARDS after admission from the ED was 14.7%, with a mean onset of 2.3 days. Progression to ARDS was associated with higher illness severity and intubation in the prehospital environment or transferring facility. Of the 15 patients with ARDS in the ED (6.8%), lung-protective ventilation was used in seven (46.7%). Patients who progressed to ARDS experienced greater duration in organ failure and ICU length of stay and higher mortality. CONCLUSIONS: Lung-protective ventilation is infrequent in patients receiving mechanical ventilation in the ED, regardless of ARDS status. Progression to ARDS is common after admission, occurs early, and worsens outcome. Patient- and treatment-related factors present in the ED are associated with ARDS. Given the limited treatment options for ARDS, and the early onset after admission from the ED, measures to prevent onset and to mitigate severity should be instituted in the ED. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01628523; URL: www.clinicaltrials.gov PMID:25742126
In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.
Active radar calibrators are used to derive both the amplitude and phase characteristics of a multichannel polarimetric SAR from the complex image data. Results are presented from an experiment carried out using the NASA/JPL DC-8 aircraft SAR over a calibration site at Goldstone, California. As part of the experiment, polarimetric active radar calibrators (PARCs) with adjustable polarization signatures were deployed. Experimental results demonstrate that the PARCs can be used to calibrate polarimetric SAR images successfully. Restrictions on the application of the PARC calibration procedure are discussed.
SU-F-P-32: A Phantom Study of Accuracy of Four-Dimensional Cone-Beam CT (4D-CBCT) Vs. Three-Dimensional Cone Beam CT (3D-CBCT) in Image Guided Radiotherapy
Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified âtissueâ types, a synthetic CTmore » for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classesâ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.« less
This study aimed to evaluate the association between the extracranial and intracranial calcification depiction of the internal carotid artery (ICA), incidentally found in CBCT examinations in adults, and to discuss the conspicuous clinical implications. Out of a series of 1085 CBCT examinations, 705 CBCT scans were selected according to pre-defined criteria. The extra- and intracranial calcifications depicted along the course of the ICA were documented according to a comprehensive set of descriptive criteria. In total, 799 findings were detected, 60.1% (nâ=â480) were intracranially and 39.9% (nâ=â319) were extracranially allocated. The Ï(2) test showed associations between all variables (pâ<â0.001). Also, most of the combinations of variables showed statistically significant results in the McNemar's test (pâ<â0.001). We found that a significant correlation exists between extra- and intracranial calcifications of the ICA. It is clear that in cases of the presence of a calcification in the ICA extracranially, the artery's intracranial portion has an increased risk of showing the same findings. CBCT imaging is widely used as a diagnostic tool, thus, our results contribute to the identification of a subgroup of patients who should undergo further medical evaluation of the atherosclerosis of the ICAs.
de Las Heras Gala, Hugo; Torresin, Alberto; Dasu, Alexandru; Rampado, Osvaldo; Delis, Harry; Hernández Girón, Irene; Theodorakou, Chrysoula; Andersson, Jonas; Holroyd, John; Nilsson, Mats; Edyvean, Sue; Gershan, Vesna; Hadid-Beurrier, Lama; Hoog, Christopher; Delpon, Gregory; Sancho Kolster, Ismael; Peterlin, Primož; Garayoa Roca, Julia; Caprile, Paola; Zervides, Costas
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for
To identify guidelines on the clinical use of CBCT in dental and maxillofacial radiology, in particular selection criteria, to consider how they were produced, to appraise their quality objectively and to compare their recommendations. A literature search using MEDLINE (Ovid(®)) was undertaken prospectively from 1 January 2000 to identify published material classifiable as "guidelines" pertaining to the use of CBCT in dentistry. This was supplemented by searches on websites, an internet search engine, hand searching of theses and by information from personal contacts. Quality assessment of publications was performed using the AGREE II instrument. Publications were examined for areas of agreement and disagreement. 26 publications were identified, 11 of which were specifically written to give guidelines on the clinical use of CBCT and contained sections on selection criteria. The remainder were a heterogeneous mixture of publications that included guidelines relating to CBCT. Two had used a formal evidence-based approach for guideline development and two used consensus methods. The quality of publications was frequently low as assessed using AGREE II, with many lacking evidence of adequate methodology. There was broad agreement between publications on clinical use, apart from treatment planning, in implant dentistry. Reporting of guideline development is often poorly presented. Guideline development panels should aim to perform and report their work using the AGREE II instrument as a template to raise standards and avoid the risk of suspicions of bias.
Purpose: With the use of CBCT, delivered dose can be calculated by transferring the planned beams onto the CBCT. Bladder and rectum volumetric doses were calculated and correlated to the daily bladder and rectum fullness. Methods: Patients for this study underwent hypofractionated prostate IMRT to 70 Gy in 28 fractions. Daily CBCT was utilized for image guidance. A clinically acceptable plan was created using a CTV to PTV margin of 5mm. Image fusion was performed to transfer the bladder and rectum contours onto each CBCT. Contours were then edited to match the anatomy of each CBCT. Using the daily treatmentmore » isocenter, the planned beams were transferred onto the CBCT and daily and cumulative DVHs calculated. Results: At the time of planning the bladder volume was 470.66cc. The mean, minimum and maximum bladder volume from the 28 CBCTs was 230.57cc, 76.16 cc and 380.8 cc, respectively. Planned bladder V70Gy was 0.98%. Actual bladder V70Gy, as calculated from the CBCTs was 2.46±1.36%. Similarly, planned V60Gy, V50Gy and V40Gy were 2.55%, 4.15% and 6.35% of the total bladder volume. The observed volumes receiving 60Gy, 50Gy and 40Gy were 5.18±2.53%, 4 to 8.21±3.76% and 6 to 12.93±5.60%, respectively. On the planning CT the rectum volume was 41.5cc. The observed mean, minimum and maximum rectum volumes were 58.09cc, 93.52 and 47.50cc. The planned rectum V70Gy was 6.02% while the observed cumulative rectum V70Gy was 13.68±3.39%. Rectum V60Gy, V50Gy and V40Gy changed from 13.61% to 22.5±3.86%, 19.15% to 28.68±4.45 and 25.56% to 34.75±5.15%. Conclusion: Bladder and rectum volumes changes during treatment have an affect on the cumulative dose received by these organs. It was observed that volumetric dose received by bladder decreases as volume of the bladder increases. There is no particular trend observed between volumetric dose and rectal volume.« less
To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.
Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2Dâ3D deformation and finite-element-analysis based biomechanical modeling. 2Dâ3D deformation optimizes the DVF through an âintensity-drivenâ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a âbiomechanical-feature-drivenâ approach, which updates the DVF based on the biophysical properties ofmore » anatomical structures. In general, Biorecon extracts the 2Dâ3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2Dâ3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2Dâ3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2Dâ3D deformation-only technique and Bio-recon were 5.6±4.3mm and
Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: relationship of radiographic gray density and implant stability.
In this work, Automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM-EDS) was used to characterize 7.65 and 9mm cartridges Turkish ammunition. All samples were analyzed in a SEM Jeol JSM-5600LV equipped BSE detector and a Link ISIS 300 (EDS). A working distance of 20mm, an accelerating voltage of 20 keV and gunshot residue software was used in all analysis. Automated search resulted in a high number of particles analyzed containing gunshot residues (GSR) unique elements (PbBaSb). The obtained data about the definition of characteristic GSR particles was concordant with other studies on this topic.
The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with current European guidelines. The CBCT examinations were performed using similar equipment and standardized among clinics. After a thorough clinical examination, but before CBCT, the examiner made a preliminary therapy plan which was recorded. After the CBCT examination, the same examiner made a new therapy plan. Therapy plans both before and after the CBCT examination were plotted for 53 patients and 81 teeth. As four patients had incomplete protocols, they were not included in the final analysis. 4% of the patients referred to endodontic clinics during the study period were examined with CBCT. The most frequent reason for referral to CBCT examination was to differentiate pathology from normal anatomy, this was the case in 24 patients (45% of the cases). The primary outcome was therapy plan changes that could be attributed to CBCT examination. There were changes in 28 patients (53%). CBCT has a significant impact on therapeutic decision efficacy in endodontics when used in concordance with the current European Commission guidelines.
The aim of this study was to evaluate whether active intervention can decrease job burnout and improve performance among ED nurses. This study was carried out in the emergency departments of 3 hospitals randomly selected from 8 comprehensive high-level hospitals in Jinan, China. A total of 102 nurses were enrolled and randomly divided into control and intervention groups. For 6 months, nurses in intervention groups were treated with ordinary treatment plus comprehensive management, whereas nurses in the control group were treated with ordinary management, respectively. Questionnaires were sent and collected at baseline and at the end of the study. The Student t test was used to evaluate the effect of comprehensive management in decreasing burnout. All ED nurses showed symptoms of job burnout at different levels. Our data indicated that comprehensive management significantly decreased emotional exhaustion and depersonalization (P < .01). The findings suggest that active intervention with comprehensive management may effectively reduce job burnout in ED nurses and contribute to relieving work-related stress and may further protect against potential mental health problems. Copyright © 2016 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.
Schumacher, Jessica R; Lutz, Barbara J; Hall, Allyson G; Pines, Jesse M; Jones, Andrea L; Hendry, Phyllis; Kalynych, Colleen; Carden, Donna L
This case report aimed to highlight the usefulness of cone beam computed tomography (CBCT) and its post-processing tools for the diagnosis, follow-up and treatment planning of invasive cervical resorption (ICR). A 16-year-old female patient was referred for periapical radiographic examination, which revealed an irregular but well demarcated radiolucency in the mandibular right central incisor. In addition, CBCT scanning was performed to distinguish between ICR and internal root resorption. After the diagnosis of ICR, the patient was advised to return shortly but did so only six years later. At that time, another CBCT scan was performed and CBCT registration and subtraction were done to document lesion progress. These imaging tools were able to show lesion progress and extent clearly and were fundamental for differential diagnosis and treatment decision.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
Matherne, Camden E; Tanofsky-Kraff, Marian; Altschul, Anne M; Shank, Lisa M; Schvey, Natasha A; Brady, Sheila M; Galescu, Ovidiu; Demidowich, Andrew P; Yanovski, Susan Z; Yanovski, Jack A
Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th
There is limited literature discussing the three dimnesional (3D) impact of rapid maxillary expansion (RME) on upper airway. The purpose of this prospective Cone Beam Computerised Tomography (CBCT) based study is to assess the immediate 3D effects and to correlate the volumteric changes in the upper naspharyngeal airway spaces secondary to RME. Seventeen participants (8 male, 9 female, with a mean age of 12.6 ± 1.8 years), who required RME for the management of narrow maxillary arch, were recruited for this study. The prescribed expansion regimen was quarter turn (0.25 mm), twice a day until over-expansion was achieved. The mean period for the active phase was 14 days with a range of 12-21 days. Pretreatment (T1) and immediate post-expansion (T2) CBCT images were obtained and then processed using ITK snap and OnDemand3D softwar packages. Paired t-test and Interclass Correlation Coefficient (ICC) were used to assess the reproducibility of the measurements, student t-test (P < 0.05) and Pearson Correlation Coefficient (PCC) were applied to evaluate the volumetric changes in the nasopharyngeal airway spaces, linear dentolaveolar changes and correlate these changes. Though, the data of one patient was excluded from the study, owing to major differences (>5 degrees) in the head and neck posture between T1 and T2 CBCT scans, the study' findings shows that bonded RME is an effective dentoalveolar expander in growing patients (P= 0.01) with an average expansion of 3.7 mm and 2.8 mm in males and females respectively. Likewise, the upper nasopharynx (UNP) expanded significantly (15.2% in males and 12% in females). In comparison, the upper retropalatal space (URP) was significantly reduced, by almost one sixth of its original volume, more in males than females, 11.2% and 2.8% respectively. A strong direct correlation between the maxillary sinus volumetric changes, and between appliance expansion and dentoalveolar expansion were evident (PCC = 0.86, 0
Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.
Purpose: Only a part of a treatment couch is reconstructed in CBCT due to the limited field of view (FOV). This often generates inaccurate results in the delivered dose evaluation with CBCT and more noise in the CBCT reconstruction. Full reconstruction of the couch at treatment setup can be used for more accurate exit beam dosimetry. The goal of this study is to develop a method to reconstruct a full treatment couch using a pre-scanned couch image and rigid registration. Methods: A full couch (Exact Couch, Varian) model image was reconstructed by rigidly registering and combining two sets of partialmore » CBCT images. The full couch model includes three parts: two side rails and a couch top. A patient CBCT was reconstructed with reconstruction grid size larger than the physical field of view to include the full couch. The image quality of the couch is not good due to data truncation, but good enough to allow rigid registration of the couch. A composite CBCT image of the patient plus couch has been generated from the original reconstruction by replacing couch portion with the pre-acquired model couch, rigidly registered to the original scan. We evaluated the clinical usefulness of this method by comparing treatment plans generated on the original and on the modified scans. Results: The full couch model could be attached to a patient CBCT image set via rigid image registration. Plan DVHs showed 1â¼2% difference between plans with and without full couch modeling. Conclusion: The proposed method generated a full treatment couch CBCT model, which can be successfully registered to the original patient image. This method was also shown to be useful in generating more accurate dose distributions, by lowering 1â¼2% dose in PTV and a few other critical organs. Part of this study is supported by NIH R01CA133539.« less
Having knowledge about the anatomy of root canal system is essential for success of endodontic treatment. The present study used cone-beam computed tomography (CBCT), to evaluate the prevalence of third root in mandibular first molars in a selected Iranian population. A total of 386 CBCT images from subjects referred to oral and maxillofacial radiology department of dental faculty of Tabriz University of Medical Sciences from 2011 to 2013 were selected and evaluated for this study and the cases with well-developed permanent mandibular first molars were included. The 3D images were reconstructed in axial cross sections and evaluated by two endodontists for the presence of the third extra lingual (radix entomolaris) or buccal (radix paramolaris) root. The chi-squared test was used to evaluate the relationship between gender and bilateral incidence of extra roots in mandibular first molars. The distribution of three-rooted mandibular first molars with an additional root was 3%, (3.53% in female and 2.50% in male patients). There was no significant relationship between gender and bilateral occurrence of three-rooted mandibular first molars. The occurrence of three-rooted mandibular first molars in Iranian population is not uncommon which should be taken into consideration by the dental practitioners during root canal treatment of these teeth.
Background With the Bonebridge, a new bone-anchored hearing aid has been available since March 2012. The objective of the study was to analyse the visualisation of the implant itself as well as its impact on the representation of the bony structures of the petrosal bone in CT, MRI and cone beam CT (CBCT). Methods The Bonebridge was implanted unilaterally in two completely prepared human heads. The radiological imaging by means of CBCT, 64-slice CT, 1.5-T and 3.0-T MRI was conducted both preoperatively and postoperatively. The images were subsequently evaluated from both the ENT medical and nd radiological perspectives. Results As anticipated, no visualisation of the implant or of the petrosal bones could be realised on MRI because of the interactive technology and the magnet artefact. In contrast, an excellent evaluability of the implant itself as well as of the surrounding neurovascular structures (sinus sigmoideus, skull base, middle ear, inner ear, inner auditory canal) was exhibited in both the CT and in the CBCT. Conclusion The Bonebridge can be excellently imaged with the radiological imaging technologies of CT and CBCT. In the process, CBCT shows discrete advantages in comparison with CT. No relevant restrictions in image quality in the evaluation of the bony structures of the petrosal bones could be seen. PMID:24004903
The aim of this study is to analyze the effects of combining cone beam computed tomography (CBCT) technology with visual root canal recurrence in the treatment of elderly patients with dental pulp disease. 56 cases of elderly patients with dental pulp disease were contiguously selected, and randomly divided into the control group (70 teeth from 27 patients) and the observation group (77 teeth from the rest 29 patients). We adopted CBCT technology combined with conventional root canal therapy in control group and CBCT technology combined with visual root canal recurrence in observation group to compare the clinical effects. It was found that there was no statistical difference in duration of operation between the two groups (p>0.05). The operation times and the VAS during and after operation of the observation group were significantly less than that of the control group (p<0.05). The duration of follow-up of the two groups was both about 18 months. Successful rates of treatment for 6 months and by the end of follow-up visit in the observation group were both significantly higher than those in the control group (p<0.05). The correct filling rate, good filling rate and fair filling rate in the observation group were significantly higher than those of the control group (p<0.05). CBCT technology combined with visual root canal recurrence can significantly improve the near and long-term treatment effects of elderly patients with dental pulp disease.
Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlightmore » liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.« less
We have designed, evaluated and calibrated an enclosed, safety-interlocked laser calibration standard for use in US Army Secondary Reference Calibration Laboratories. This Laser Test Set Calibrator (LTSC) represents the Army's first-generation field laser calibration standard. Twelve LTSC's are now being fielded world-wide. The main requirement on the LTSC is to provide calibration support for the Test Set (TS3620) which, in turn, is a GO/NO GO tester of the Hand-Held Laser Rangefinder (AN/GVS-5). However, we believe it's design is flexible enough to accommodate the calibration of other laser test, measurement and diagnostic equipment (TMDE) provided that single-shot capability is adequate to perform the task. In this paper we describe the salient aspects and calibration requirements of the AN/GVS-5 Rangefinder and the Test Set which drove the basic LTSC design. Also, we detail our evaluation and calibration of the LTSC, in particular, the LTSC system standards. We conclude with a review of our error analysis from which uncertainties were assigned to the LTSC calibration functions.
Purpose: This study assesses the potential use of CBCT images in adaptive protontherapy by estimating the contribution of the main sources of noise and calibration errors to the proton range uncertainty. Methods: Measurements intended to highlight each particular source have been achieved by adapting either the testbench configuration, e.g. use of filtration, fan-beam collimation, beam stop arrays, phantoms and detector reset light, or the sequence of correction algorithms including water precorrection. Additional Monte-Carlo simulations have been performed to complement these measurements, especially for the beam hardening and the scatter cases. Simulations of proton beams penetration through the resulting images havemore » then been carried out to quantify the range change due to these effects. The particular case of a brain irradiation is considered mainly because of the multiple effects that the skull bones have on the internal soft tissues. Results: On top of the range error sources is the undercorrection of scatter. Its influence has been analyzed from a comparison of fan-beam and full axial FOV acquisitions. In this case, large range errors of about 12 mm can be reached if the assumption is made that the scatter has only a constant contribution over the projection images. Even the detector lag, which a priori induces a much smaller effect, has been shown to contribute for up to 2 mm to the overall error if its correction only aims at reducing the skin artefact. This last result can partially be understood by the larger interface between tissues and bones inside the skull. Conclusion: This study has set the basis of a more systematical analysis of the effect CBCT noise on range uncertainties based on a combination of measurements, simulations and theoretical results. With our method, even more subtle effects such as the cone-beam artifact or the detector lag can be assessed. SBR and JOR are financed by iMagX, a public-private partnership between the region
Villoria, Eduardo M; Lenzi, Antônio R; Soares, Rodrigo V; Souki, Bernardo Q; Sigurdsson, Asgeir; Marques, Alexandre P; Fidel, Sandra R
Radiographic signs of pathology determining removal of an impacted mandibular third molar assessed in a panoramic image or CBCT
Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a
Ectodermal dysplasia (ED) syndrome comprises a large, heterogeneous group of inherited disorders that are defined by primary defects in the development of 2 or more tissues derived from the embryonic ectoderm. The tissues primarily involved are the skin and its appendages (including hair follicles, eccrine glands, sebaceous glands, nails) and teeth. The clinical features include sparse hair, abnormal or missing teeth, and an inability to sweat due to lack of sweat glands. One such case report of ectodermal dysplasia is presented here.
We use longitudinal data from Washington State to provide estimates of the extent to which performance on the edTPA, a performance-based, subject-specific assessment of teacher candidates, is predictive of the likelihood of employment in the teacher workforce and value-added measures of teacher effectiveness. While edTPA scores are highlyâ¦
Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.
We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Acute dyspnea is a common symptom in the ED. The standard approach to dyspnea often relies on radiologic and laboratory results, causing excessive delay before adequate therapy is started. Use of an integrated point-of-care ultrasonography (PoCUS) approach can shorten the time needed to formulate a diagnosis, while maintaining an acceptable safety profile. Consecutive adult patients presenting with dyspnea and admitted after ED evaluation were prospectively enrolled. The gold standard was the final diagnosis assessed by two expert reviewers. Two physicians independently evaluated the patient; a sonographer performed an ultrasound evaluation of the lung, heart, and inferior vena cava, while the treating physician requested traditional tests as needed. Time needed to formulate the ultrasound and the ED diagnoses was recorded and compared. Accuracy and concordance of the ultrasound and the ED diagnoses were calculated. A total of 2,683 patients were enrolled. The average time needed to formulate the ultrasound diagnosis was significantly lower than that required for ED diagnosis (24 ± 10 min vs 186 ± 72 min; P = .025). The ultrasound and the ED diagnoses showed good overall concordance (κ = 0.71). There were no statistically significant differences in the accuracy of PoCUS and the standard ED evaluation for the diagnosis of acute coronary syndrome, pneumonia, pleural effusion, pericardial effusion, pneumothorax, and dyspnea from other causes. PoCUS was significantly more sensitive for the diagnosis of heart failure, whereas a standard ED evaluation performed better in the diagnosis of COPD/asthma and pulmonary embolism. PoCUS represents a feasible and reliable diagnostic approach to the patient with dyspnea, allowing a reduction in time to diagnosis. This protocol could help to stratify patients who should undergo a more detailed evaluation. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Our objective was to report 7 cases of splenic artery aneurysm (SAA) encountered in the emergency department (ED). A retrospective survey of our ED database revealed 7 cases of SAA (6 men, 1 woman; mean age, 56 years) of 651,347 ED visits over the last decade. Their clinical and imaging features, management, and outcomes were evaluated. Splenic artery aneurysm in the ED was rare (prevalence, 0.011%). Common presentations included acute abdomen (n = 5) and shock (n = 2). Five cases had liver cirrhosis and portal hypertension. Abdominal radiographs (n = 7) revealed 2 atherosclerotic patients with SAA. Abdominal computed tomography (n = 7) depicted all SAAs (size, 1.5-8 cm; mean, 3.8 cm). Four ruptured SAAs were successfully managed with coils embolization. Among them, 1 patient with ruptured mycotic SAA also received surgery, but the patient died of Klebsiella sepsis 3 months later. In the ED, ruptured SAA should be included as a rare differential consideration of acute abdomen, especially in middle-aged men with liver cirrhosis and portal hypertension. Although SAA may be an unexpected computed tomographic finding, once diagnosed, endovascular treatment is recommended.
High fraction of scattered radiation in cone-beam CT (CBCT) imaging degrades CT number accuracy and visualization of low contrast objects. To suppress scatter in CBCT projections, we developed a focused, two-dimensional antiscatter grid (2DASG) prototype. In this work, we report on the primary and scatter transmission characteristics of the 2DASG prototype aimed for linac mounted, offset detector geometry CBCT systems in radiation therapy, and compared its performance to a conventional one-dimensional ASG (1DASG). The 2DASG is an array of through-holes separated by 0.1Â mm septa that was fabricated from tungsten using additive manufacturing techniques. Through-holes' focusing geometry was designed for offset detector CBCT in Varian TrueBeam system. Two types of ASGs were evaluated: (a) a conventional 1DASG with a grid ratio of 10, (b) the 2DASG prototype with a grid ratio of 8.2. To assess the scatter suppression performance of both ASGs, Scatter-to-primary ratio (SPR) and scatter transmission fraction (Ts) were measured using the beam stop method. Scatter and primary intensities were modulated by varying the phantom thickness between 10 and 40Â cm. Additionally, the effect of air gap and bow tie (BT) filter on SPR and Ts were evaluated. Average primary transmission fraction (T P ) and pixel specific primary transmission were also measured for both ASGs. To assess the effect of transmission characteristics on projection image signal-to-noise ratio (SNR), SNR improvement factor was calculated. Improvement in contrast to noise ratio (CNR) was demonstrated using a low contrast object. In comparison to 1DASG, 2DASG reduced SPRs by a factor of 3 to 6 across the range of phantom setups investigated. Ts values for 1D and 2DASGs were in the range of 21 to 29%, and 5 to 14% respectively. 2DASG continued to provide lower SPR and Ts at increased air gap and with BT filter. Tp of 1D and 2DASGs were 70.6% and 84.7% respectively. Due to the septal shadow of the 2DASG, its pixel
Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of âground-truthâ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant
Purpose: To investigate the accuracy and robustness, against image noise and artifacts (typical of CBCT images), of a commercial algorithm for deformable image registration (DIR), to propagate regions of interest (ROIs) in computational phantoms based on real prostate patient images. Methods: The Anaconda DIR algorithm, implemented in RayStation was tested. Two specific Deformation Vector Fields (DVFs) were applied to the reference data set (CTref) using the ImSimQA software, obtaining two deformed CTs. For each dataset twenty-four different level of noise and/or capping artifacts were applied to simulate CBCT images. DIR was performed between CTref and each deformed CTs and CBCTs.more » In order to investigate the relationship between image quality parameters and the DIR results (expressed by a logit transform of the Dice Index) a bilinear regression was defined. Results: More than 550 DIR-mapped ROIs were analyzed. The Statistical analysis states that deformation strenght and artifacts were significant prognostic factors of DIR performances, while noise appeared to have a minor role in DIR process as implemented in RayStation as expected by the image similarity metric built in the registration algorithm. Capping artifacts reveals a determinant role for the accuracy of DIR results. Two optimal values for capping artifacts were found to obtain acceptable DIR results (DICE> 075/ 0.85). Various clinical CBCT acquisition protocol were reported to evaluate the significance of the study. Conclusion: This work illustrates the impact of image quality on DIR performance. Clinical issues like Adaptive Radiation Therapy (ART) and Dose Accumulation need accurate and robust DIR software. The RayStation DIR algorithm resulted robust against noise, but sensitive to image artifacts. This result highlights the need of robustness quality assurance against image noise and artifacts in the commissioning of a DIR commercial system and underlines the importance to adopt optimized
Purpose: To develop a radiotherapy dose tracking and plan evaluation technique using cone-beam computed tomography (CBCT) images. Methods: We developed a patient-specific method of calibrating CBCT image sets for dose calculation. The planning CT was first registered with the CBCT using deformable image registration (DIR). A scatter plot was generated between the CT numbers of the planning CT and CBCT for each slice. The CBCT calibration curve was obtained by least-square fitting of the data, and applied to each CBCT slice. The calibrated CBCT was then merged with original planning CT to extend the small field of view of CBCT.more » Finally, the treatment plan was copied to the merged CT for dose tracking and plan evaluation. The proposed patient-specific calibration method was also compared to two methods proposed in literature. To evaluate the accuracy of each technique, 15 head-and-neck patients requiring plan adaptation were arbitrarily selected from our institution. The original plan was calculated on each methodâs data set, including a second planning CT acquired within 48 hours of the CBCT (serving as gold standard). Clinically relevant dose metrics and 3D gamma analysis of dose distributions were compared between the different techniques. Results: Compared to the gold standard of using planning CTs, the patient-specific CBCT calibration method was shown to provide promising results with gamma pass rates above 95% and average dose metric agreement within 2.5%. Conclusions: The patient-specific CBCT calibration method could potentially be used for on-line dose tracking and plan evaluation, without requiring a re-planning CT session.« less
An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.
Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters.
GarcÃa, Ana V; Blanvillain-Baufumé, Servane; Huibers, Robin P; Wiermer, Marcel; Li, Guangyong; Gobbato, Enrico; Rietz, Steffen; Parker, Jane E
Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source âsymmetricâ Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8±0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6±1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6±0.9) mm compared to rigid registration TRE=(3.6±1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1Ã1Ã2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for
Does rapid maxillary expansion affect nasopharyngeal airway? A prospective Cone Beam Computerised Tomography (CBCT) based study.
Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less
Introduction Older, chronically ill patients with limited health literacy are often under-engaged in managing their health and turn to the emergency department (ED) for healthcare needs. We tested the impact of an ED-initiated coaching intervention on patient engagement and follow-up doctor visits in this high-risk population. We also explored patientsâ care-seeking decisions. Methods We conducted a mixed-methods study including a randomized controlled trial and in-depth interviews in two EDs in northern Florida. Participants were chronically ill older ED patients with limited health literacy and Medicare as a payer source. Patients were assigned to an evidence-based coaching intervention (n= 35) or usual post-ED care (n= 34). Qualitative interviews (n=9) explored patientsâ reasons for ED use. We assessed average between-group differences in patient engagement over time with the Patient Activation Measure (PAM) tool, using logistic regression and a difference-in-difference approach. Between-group differences in follow-up doctor visits were determined. We analyzed qualitative data using open coding and thematic analysis. Results PAM scores fell in both groups after the ED visit but fell significantly more in âusual careâ (average decline â4.64) than âinterventionâ participants (average decline â2.77) (β=1.87, p=0.043). There were no between-group differences in doctor visits. Patients described well-informed reasons for ED visits including onset and severity of symptoms, lack of timely provider access, and immediate and comprehensive ED care. Conclusion The coaching intervention significantly reduced declines in patient engagement observed after usual post-ED care. Patients reported well-informed reasons for ED use and will likely continue to make ED visits unless strategies, such as ED-initiated coaching, are implemented to help vulnerable patients better manage their health and healthcare. PMID:28611897
Studies have shown a reduction in time-to-CT and improved process measures when EMS personnel notify the ED of a "stroke alert" from the field. However, there are few data on the accuracy of these EMS stroke alerts. The goal of this study was to examine diagnostic test performance of EMS and ED stroke alerts and related process measures. The EMS and ED records of all stroke alerts in a large tertiary ED from August 2013-January 2014 were examined and data abstracted by one trained investigator, with data accuracy confirmed by a second investigator for 15% of cases. Stroke alerts called by EMS prior to ED arrival were compared to stroke alerts called by ED physicians and nurses (for walk-in patients, and patients transported by EMS without EMS stroke alerts). Means ± SD, medians, unpaired t-tests (for continuous data), and two-tailed Fisher's exact tests (for categorical data) were used. Of 260 consecutive stroke alerts, 129 were EMS stroke alerts, and 131 were ED stroke alerts (70 called by physicians, 61 by nurses). The mean NIH Stroke Scale was higher in the EMS group (8.1 ± 7.6 vs. 3.0 ± 5.0, p < 0.0001). The positive predictive value of EMS stroke alerts was 0.60 (78/129), alerts by ED nurses was 0.25 (15/61), and alerts by ED physicians was 0.31 (22/70). The PPV for EMS was better than for nurses or physicians (both p < 0.001), and more patients in the EMS group had final diagnoses of stroke (62/129 vs. 24/131, p < 0.001). The positive likelihood ratio was 1.53 for EMS personnel, 0.45 for physicians, and 0.77 for nurses. The mean time to order the CT (8.5 ± 7.1 min vs. 23.1 ± 18.2 min, p < 0.0001) and the mean ED length of stay (248 ± 116 min vs. 283 ± 128 min, p = 0.022) were shorter for the EMS stroke alert group. More EMS stroke alert patients received tPA (16/129 vs. 6/131, p = 0.027). EMS stroke alerts have better diagnostic test performance than stroke alerts by ED staff, likely due to higher NIH Stroke Scale scores (more obvious
Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT.more » PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.« less
Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulatemore » sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site
Although EDs are responsible for the initial care of critically ill patients and the amount of critical care provided in the ED is increasing, there are few data examining mechanical ventilation (MV) in the ED. In addition, characteristics of ED-based ventilation may affect planning for ventilator shortages during pandemic influenza or bioterrorist events. The study examined the epidemiology of MV in US EDs, including demographic, clinical, and hospital characteristics; indications for MV; ED length of stay (LOS); and in-hospital mortality. This study was a retrospective review of the 1993 to 2007 National Hospital Ambulatory Medical Care Survey ED data sets. Ventilated patients were compared with ED patients admitted to the intensive care unit (ICU) and to all other ED visits. There were 3.6 million ED MV visits (95% confidence interval [CI], 3.2-4.0 million) over the study period. Sex, age, race, and payment source were similar for mechanically ventilated and ICU patients (P > .05 for all). Approximately 12.5% of ventilated patients underwent cardiopulmonary resuscitation compared with 1.7% of ICU admissions and 0.2% of all other ED visits (P < .0001). Accordingly, in-hospital mortality was significantly higher for ventilated patients (24%; 95% CI, 13.1%-34.9%) than both comparison groups (9.3% and 2.5%, respectively). Median LOS for ventilated patients was 197 minutes (interquartile range, 112-313 minutes) compared with 224 minutes for ICU admissions and 140 minutes for all other ED visits. Patients undergoing ED MV have particularly high in-hospital mortality rates, but their ED LOS is sufficient for implementation of evidence-based ventilator interventions. Copyright © 2012 Elsevier Inc. All rights reserved.
An Automated Thermocouple Calibration System (ATCS) was developed for the unattended calibration of type K thermocouples. This system operates from room temperature to 650 C and has been used for calibration of thermocouples in an eight-zone furnace system which may employ as many as 60 thermocouples simultaneously. It is highly efficient, allowing for the calibration of large numbers of thermocouples in significantly less time than required for manual calibrations. The system consists of a personal computer, a data acquisition/control unit, and a laboratory calibration furnace. The calibration furnace is a microprocessor-controlled multipurpose temperature calibrator with an accuracy of +/- 0.7 C. The accuracy of the calibration furnace is traceable to the National Institute of Standards and Technology (NIST). The computer software is menu-based to give the user flexibility and ease of use. The user needs no programming experience to operate the systems. This system was specifically developed for use in the Microgravity Materials Science Laboratory (MMSL) at the NASA LeRC.
An interprojection sensor fusion approach to estimate blocked projection signal in synchronized moving grid-based CBCT system
To quantify the change, if any, in flexmap correction factors and image quality with the XVI system over a course of several years and from these results, assess their clinical impact. Flexmap, a calibration procedure which corrects for imperfect gantry rotation for cone-beam CT reconstruction, and image quality tests were performed on three Elekta Synergy linacs equipped with XVI. Data was collected per month over three years. U and V values, corresponding to lateral and longitudinal shifts respectively, were acquired through the XVI software. Image quality parameters were obtained through CT imaging of the Catphan 500®. For each reconstruction, pixel values for low density polyethylene (LDPE) and polystyrene materials were recorded. For all three linacs, analysis of the flexmap showed a significant change in the U factor for both month-to-month comparisons and comparisons between machines. The V correction factor exhibited a small variation month to month, and showed a slight, gradual increase over time (0.2 +/-0.08 mm). Image quality analysis showed a near consistent decrease (5-10%) in LDPE and polystyrene. Despite this decrease in pixel values, the ratio of the two pixel values remained constant, thus a similar decreasing trend in contrast was not observed. Analysis of monthly flexmap calibration showed the general monthly change in correction shifts and their general trend over several years. For image quality, our research exhibited roughly 0.5% per month decrease in pixel values of the Catphan®. Our results imply that CBCT images obtained from XVI are not appropriate for treatment planning and despite the decrease in panel response over time, image quality with respect to contrast will remain within acceptable clinical standards. Future studies may be carried out to assess any correlation between image quality and XVI source strength. © 2012 American Association of Physicists in Medicine.
The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.
This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in â¤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.
The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt's cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words: Root fracture, CBCT, Epidemiolog.
Curtis, Jonathan L; Harvey, D Brandon; Willie, Scott; Narasimhan, Evan; Andrews, Seth; Henrichsen, Jake; Van Buren, Nicholas C; Srivastava, Rajendu; Meier, Jeremy D
Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J.; Sorger, Jonathan M.; Armand, Mehran; Taylor, Russell H.
The relationship of conventional multi-slice computed tomography (CT)- and cone beam CT (CBCT)-based gray density values and the primary stability parameters of implants that were placed by stereolithographic surgical guides were analyzed in this study. Eighteen edentulous jaws were randomly scanned by a CT (CT group) or a CBCT scanner (CBCT group) and radiographic gray density was measured from the planned implants. A total of 108 implants were placed, and primary stability parameters were measured by insertion torque value (ITV) and resonance frequency analysis (RFA). Radiographic and subjective bone quality classification (BQC) was also classified. Results were analyzed by correlation tests and multiple regressions (pâ<â.05). CBCT-based gray density values (765â±â97.32 voxel value) outside the implants were significantly higher than those of CT-based values (668.4â±â110 Hounsfield unit, pâ<â.001). Significant relations were found among the gray density values outside the implants, ITV (adjusted r(2) â=â0.6142, pâ=â.001 and adjusted r(2) â=â0.5166, pâ=â.0021), and RFA (adjusted r(2) â=â0.5642, pâ=â.0017 and adjusted r(2) â=â0.5423, pâ=â.0031 for CT and CBCT groups, respectively). Data from radiographic and subjective BQC were also in agreement. Similar to the gray density values of CT, that of CBCT could also be predictive for the subjective BQC and primary implant stability. Results should be confirmed on different CBCT scanners. © 2012 Wiley Periodicals, Inc.
Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.
Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cmâ3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537
Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less
Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferablymore » form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT
To (1) compare pathological findings related to the mandibular third molar in panoramic images (PAN) and CBCT; (2) estimate the frequency of removals if pathological findings were indicative; and (3) assess factors in PAN associated with resorption and marginal bone loss at the second molar as observed in CBCT. 379 mandibular third molars were examined with PAN and CBCT. Four observers registered resorption and marginal bone loss at the second molar and increased periodontal space at the third molar in both imaging modalities. Agreement between PAN and CBCT, frequency of removals based on pathological findings in either of the two modalities and interobserver reproducibility was calculated. Logistic regression analyses assessed factors in PAN, which could predict marginal bone loss and resorption observed in CBCT. Agreement between PAN and CBCT: resorption 54-74%; marginal bone loss 66-85%; and increased periodontal space 92-97%. Removals based on CBCT and PAN: 58-71% and 36-65%. Interobserver percentage accordance and kappa values ranged from 57 to 98% and 0.10-0.91 for PAN and 61-97% and 0.22-0.78 for CBCT, respectively. Mesioangulated/horizontally positioned third molars were associated with marginal bone loss [odds ratio (OR)â=â7.0-31.3; pâ<â0.001] and resorption (ORâ=â2.9-35.6; pâ<â0.001) in CBCT. Overprojection between the third and the second molars in PAN predicted resorption observed in CBCT (ORâ=â5.6-21.2; pâ<â0.001). Pathology associated with the third molar is more often observed in CBCT than in PAN. More third molars would be removed if pathological findings are based on CBCT. Mesioangulated/horizontally positioned third molars overprojecting the cervical/root part of the second molar in PAN are strongly associated with pathology observed in CBCT.
For cone-beam computed tomography (CBCT), transversal shifts of the rotation center exist inevitably, which will result in geometric artifacts in CT images. In this work, we propose a novel geometric calibration method for CBCT, which can also be used in micro-CT. The symmetry property of the sinogram is used for the first calibration, and then L0-norm of the gradient image from the reconstructed image is used as the cost function to be minimized for the second calibration. An iterative search method is adopted to pursue the local minimum of the L0-norm minimization problem. The transversal shift value is updated with affirmatory step size within a search range determined by the first calibration. In addition, graphic processing unit (GPU)-based FDK algorithm and acceleration techniques are designed to accelerate the calibration process of the presented new method. In simulation experiments, the mean absolute difference (MAD) and the standard deviation (SD) of the transversal shift value were less than 0.2 pixels between the noise-free and noisy projection images, which indicated highly accurate calibration applying the new calibration method. In real data experiments, the smaller entropies of the corrected images also indicated that higher resolution image was acquired using the corrected projection data and the textures were well protected. Study results also support the feasibility of applying the proposed method to other imaging modalities.
It has been observed that emergency department (ED) attendances are not random events but rather have definite time patterns and trends that can be observed historically. To describe the time demand patterns at the ED and apply systems status management to tailor ED manpower demand. Observational study of all patients presenting to the ED at the Singapore General Hospital during a 3-year period was conducted. We also conducted a time series analysis to determine time norms regarding physician activity for various severities of patients. The yearly ED attendances increased from 113387 (2004) to 120764 (2005) and to 125773 (2006). There was a progressive increase in severity of cases, with priority 1 (most severe) increasing from 6.7% (2004) to 9.1% (2006) and priority 2 from 33.7% (2004) to 35.1% (2006). We noticed a definite time demand pattern, with seasonal peaks in June, weekly peaks on Mondays, and daily peaks at 11 to 12 am. These patterns were consistent during the period of the study. We designed a demand-based rostering tool that matched doctor-unit-hours to patient arrivals and severity. We also noted seasonal peaks corresponding to public holidays. We found definite and consistent patterns of patient demand and designed a rostering tool to match ED manpower demand.
Cazzato, Roberto Luigi; Battistuzzi, Jean-Benoit; Catena, Vittorio; Grasso, Rosario Francesco; Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier; Palussiere, Jean
The simulation experiment description markup language (SED-ML) is a new community data standard to encode computational biology experiments in a computer-readable XML format. Its widespread adoption will require the development of software support to work with SED-ML files. Here, we describe a software tool, SED-ED, to view, edit, validate and annotate SED-ML documents while shielding end-users from the underlying XML representation. SED-ED supports modellers who wish to create, understand and further develop a simulation description provided in SED-ML format. SED-ED is available as a standalone Java application, as an Eclipse plug-in and as an SBSI (www.sbsi.ed.ac.uk) plug-in, all under an MIT open-source license. Source code is at https://sed-ed-sedmleditor.googlecode.com/svn. The application itself is available from https://sourceforge.net/projects/jlibsedml/files/SED-ED/.
Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kilovoltage-cone beam CT (CBCT) using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of 1D translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian On-Board Imager system. CBCT and planar image quality were investigated as a function of aperture radius, while maintaining the same dose to the VOI,more » for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various sizes VOI were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 to 2.4 cm (at isocenter). Depending upon VOI location and size, dose was reduced to 16%â90% of the full-field value along the central axis plane and down to 4% along the axis of rotation, while maintaining the same dose to the VOI compared to full-field techniques. When maintaining constant dose to the VOI, this change in iris diameter corresponds to a factor increase of approximately 1.6 in image contrast and a factor decrease in image noise of approximately 1.2. This results in a measured gain in contrast-to-noise ratio by a factor of approximately 2.0. Conclusions: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.« less
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction
Stanford Center for Assessment, Learning, and Equity (SCALE) provides a commentary on the manuscripts in this special issue, responding to criticisms of edTPA as an assessment that narrows the curriculum, heavily relies on students' academic writing skills, and creates additional burdens for teacher candidates. The commentary highlights how edTPAâ¦
Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery
To assess the in vitro diagnostic ability of CBCT images using seven different display types in the detection of recurrent caries. Our study comprised 128 extracted human premolar and molar teeth. 8 groups each containing 16 teeth were obtained as follows: (1) Black Class I (Occlusal) amalgam filling without caries; (2) Black Class I (Occlusal) composite filling without caries; (3) Black Class II (Proximal) amalgam filling without caries; (4) Black Class II (Proximal) composite filling without caries; (5) Black Class I (Occlusal) amalgam filling with caries; (6) Black Class I (Occlusal) composite filling with caries; (7) Black Class II (Proximal) amalgam filling with caries; and (8) Black Class II (Proximal) composite filling with caries. Teeth were imaged using 100âÃâ90âmm field of view at three different voxel sizes of a CBCT unit (Planmeca ProMax(®) 3D ProFaceâ¢; Planmeca, Helsinki, Finland). CBCT TIFF images were opened and viewed using custom-designed software for computers on different display types. Intra- and interobserver agreements were calculated. The highest area under the receiver operating characteristic curve (Az) values for each image type, observer, reading and restoration were compared using z-tests against Azâ=â0.5. The significance level was set at pâ=â0.05. We found poor and moderate agreements. In general, Az values were found when software and medical diagnostic monitor were utilized. For Observer 2, Az values were statistically significantly higher when software was used on medical monitor [pâ=â0.036, pâ=â0.015 and pâ=â0.002, for normal-resolution mode (0.200âmm(3) voxel size), high-resolution mode (0.150âmm(3) voxel size) and low-resolution mode (0.400âmm(3) voxel size), respectively]. No statistically significant differences were found among other display types for all modes (pâ>â0.05). In general, no difference was found among 3 different voxel sizes (pâ>â0.05). In general, higher Az values were
Purpose: To describe the design and performance of a ceiling-mounted robotic C-arm CBCT system for image-guided proton therapy. Methods: Uniquely different from traditional C-arm CBCT used in interventional radiology, the imaging system was designed to provide volumetric image guidance for patients treated on a 190-degree proton gantry system and a 6 degree-of-freedom (DOF) robotic patient positioner. The mounting of robotic arms to the ceiling rails, rather than gantry or nozzle, provides the flexibility in imaging locations (isocenter, iso+27cm in X, iso+100cm in Y) in the room and easier upgrade as technology advances. A kV X-ray tube and a 43Ã43cm flatmore » panel imager were mounted to a rotating C-ring (87cm diameter), which is coupled to the C-arm concentrically. Both C-arm and the robotic arm remain stationary during imaging to maintain high position accuracy. Source-to-axis distance and source-to-imager distance are 100 and 150cm, respectively. A 14:1 focused anti-scatter grid and a bowtie filer are used for image acquisition. A unique automatic collimator device of 4 independent blades for adjusting field of view and reducing patient dose has also been developed. Results: Sub-millimeter position accuracy and repeatability of the robotic C-arm were measured with a laser tracker. High quality CBCT images for positioning can be acquired with a weighted CTDI of 3.6mGy (head in 200° full fan mode: 100kV, 20mA, 20ms, 10fps)-8.7 mGy (pelvis in 360° half fan mode: 125kV, 42mA, 20ms, 10fps). Image guidance accuracy achieved <1mm (3D vector) with automatic 3D-3D registration for anthropomorphic head and pelvis phantoms. Since November 2015, 22 proton therapy patients have undergone daily CBCT imaging for 6 DOF positioning. Conclusion: Decoupled from gantry and nozzle, this CBCT system provides a unique solution for volumetric image guidance with half/partial proton gantry systems. We demonstrated that daily CBCT can be integrated into proton therapy for pre
The edTPA, a performance assessment designed to generate reliable and valid measures of teaching practice, increasingly is used as a gatekeeping mechanism for beginning teacher licensure in various states, including New York, Washington State, Wisconsin, and Georgia. One of the edTPA's key components is the demonstration of instructional practiceâ¦
Objectives: The purposes of the study are to investigate the consistency of linear measurements between CBCT orthogonally synthesized cephalograms and conventional cephalograms and to evaluate the influence of different magnifications on these comparisons based on a simulation algorithm. Methods: Conventional cephalograms and CBCT scans were taken on 12 dry skulls with spherical metal markers. Orthogonally synthesized cephalograms were created from CBCT data. Linear parameters on both cephalograms were measured via Photoshop CS v. 5.0 (Adobe® Systems, San Jose, CA), named measurement group (MG). BlandâAltman analysis was utilized to assess the agreement of two imaging modalities. Reproducibility was investigated using paired t-test. By a specific mathematical programme âcephaâ, corresponding linear parameters [mandibular corpus length (Go-Me), mandibular ramus length (Co-Go), posterior facial height (Go-S)] on these two types of cephalograms were calculated, named simulation group (SG). BlandâAltman analysis was used to assess the agreement between MG and SG. Simulated linear measurements with varying magnifications were generated based on âcephaâ as well. BlandâAltman analysis was used to assess the agreement of simulated measurements between two modalities. Results: BlandâAltman analysis suggested the agreement between measurements on conventional cephalograms and orthogonally synthesized cephalograms, with a mean bias of 0.47âmm. Comparison between MG and SG showed that the difference did not reach clinical significance. The consistency between simulated measurements of both modalities with four different magnifications was demonstrated. Conclusions: Normative data of conventional cephalograms could be used for CBCT orthogonally synthesized cephalograms during this transitional period. PMID:25029593
Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogrammore » (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.« less
Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Zhou, Guangchao; Sun, Chao; Yang, Lianfeng; Bai, Jianling; Gao, Jun; Wu, Yunong; Cheng, Jie
compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT. With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components. © 2017 American Association of Physicists in Medicine.
Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration
To suggest a standardized method to assess the variation in voxel value distribution in patient-simulated CBCT data sets and the effect of time between exposures (TBE). Additionally, a measurement of reproducibility, Aarhus measurement of reproducibility (AMORe), is introduced, which could be used for quality assurance purposes. Six CBCT units were tested [Cranex(®) 3D/CRAN (Soredex Oy, Tuusula, Finland); Scanora(®) 3D/SCAN (Soredex Oy); NewTom⢠5G/NEW5 (QR srl, Verona, Italy); i-CAT/ICAT (Imaging Sciences International, Hatfield, PA); 3D Accuitomo FPD80/ACCU (Morita, Kyoto, Japan); and NewTom VG/NEWV (QR srl)]. Two sets of volumetric data of a wax-imbedded dry human skull (containing a titanium implant) were acquired by each CBCT unit at two sessions on separate days. Each session consisted 21 exposures: 1 "initial" followed by a 30-min interval (initial data set), 10 acquired with 30-min TBE (data sets 1-10) and 10 acquired with 15-min TBE (data sets 11-20). CBCT data were exported as digital imaging and communications in medicine files and converted to text files containing x, y and z positions and grey shade for each voxel. Subtractions were performed voxel-by-voxel in two set-ups: (1) between two consecutive data sets and (2) between any subsequent data set and data set 1. The mean grey shade variation for each voxel was calculated for each unit/session. The largest mean grey shade variation was found in the subtraction set-up 2 (27-447 shades of grey, depending on the unit). Considering subtraction set-up 1, the highest variation was seen for NEW5, between data sets 1 and the initial. Discrepancies in voxel value distribution were found by comparing the initial examination of the day with the subsequent examinations. TBE had no predictable effect on the variation of CBCT-derived voxel values. AMORe ranged between 0 and 64.
Currently, Canon sells both the 700D and 750D/760D new, as well as the 1300D. But the 1300D has 18MP, like the 700D (not 24MP like the 750D/760D), and is on the old Digic4 processor, like the 600D (700D is on Digic 5, and 750D/760D are Digic 6).
The aim of the guideline presented in this article is to unify the test parameters for image quality evaluation and radiation output in all types of cone-beam computed tomography (CBCT) systems. The applications of CBCT spread over dental and interventional radiology, guided surgery and radiotherapy. The chosen tests provide the means to objectively evaluate the performance and monitor the constancy of the imaging chain. Experience from all involved associations has been collected to achieve a consensus that is rigorous and helpful for the practice. The guideline recommends to assess image quality in terms of uniformity, geometrical precision, voxel density values (or Hounsfield units where available), noise, low contrast resolution and spatial resolution measurements. These tests usually require the use of a phantom and evaluation software. Radiation output can be determined with a kerma-area product meter attached to the tube case. Alternatively, a solid state dosimeter attached to the flat panel and a simple geometric relationship can be used to calculate the dose to the isocentre. Summary tables including action levels and recommended frequencies for each test, as well as relevant references, are provided. If the radiation output or image quality deviates from expected values, or exceeds documented action levels for a given system, a more in depth system analysis (using conventional tests) and corrective maintenance work may be required. Copyright © 2017. Published by Elsevier Ltd.
Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named âImage Analysis Platformâ for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively bymore » using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.« less
Purpose Daily setup for definitive prostatic radiotherapy is challenged by suboptimal visibility of the prostate boundary and daily variation of rectum shape and position. For patients with improved bowel preparation, we conducted a dosimetric comparison between prostate implanted marker (IM)-based daily setup and anterior rectal wall (ARW)-based setup, with the hypothesis that the former leads to adequate target coverage with better rectal sparing. Methods Five IMRT/VMAT prostate cases with implanted markers were selected for analysis. Daily CBCT showed improvement of the rectal volume compared to planning CT. For each patient, the prostate and rectum were contoured on three CBCT imagesmore » (fraction 5/15/25) with subsequent physician review. The CBCTs were then registered to a planning CT using IM-based registration. The deviation of ARW positions from planning CT to CBCT were analyzed at various sup-inf levels (â1.8 cm to 1.8 cm from level of prostate center). To estimate the potential dosimetric impact from ARW-based setup, the treatment plans were recalculated using A-P shifts ranging from â1mm to +6mm. Clinically important rectum DVH values including Dmax, D3cc and Dmean were computed. Results For the studied patients, we observed on average 32% rectum volume reduction from planning CT to CBCT. As a Results, the ARW on average shifts posteriorly by â1mm to +5mm, depending on the sup-inf level of observation, with larger shifts observed at more superior levels. Recalculation shows that when ARW shifts 1mm posteriorly, ARW-based CBCT setup leads to a 1.0%, 4.2%, and 3.2% increase in rectum Dmax, D3cc, and Dmean, respectively, compared to IM-based setup. The dosimetric deviations increase to 4.7%, 25.8% and 24.7% when ARW shifts 6mm posteriorly. No significant prostate-only dose difference was observed. Conclusion For patients with improved bowel preparation, IM-based CBCT setup leads to accurate prostate coverage along with significantly lower rectal
The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups ( n =13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey's post hoc tests were used for two-by-two comparisons. Gates-Glidden drills with hand files removed significantly more ( P <0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems ( P >0.05). The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls.
DoÄan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa; Yavuz, Izzet
... 34 Education 1 2013-07-01 2013-07-01 false Age distinctions contained in ED's regulations. 110.17..., DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Standards for Determining Age Discrimination § 110.17 Age distinctions contained in ED...
... Spatial Resolution Temporal Coverage CER_GEO_Ed4_GOE08 Hourly 2-4km observation at nadir, subsampled every 8-9 km 2000-03-01 to 2003-04-01 CER_GEO_Ed4_GOE09 Hourly 2-4km observation at nadir, subsampled ...
Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for eachmore » single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.« less
Purpose: The focus of this work is the development of a novel blade collimation system enabling volume of interest (VOI) CBCT with tube current modulation using the kV image guidance source on a linear accelerator. Advantages of the system are assessed, particularly with regard to reduction and localization of dose and improvement of image quality. Methods: A four blade dynamic kV collimator was developed to track a VOI during a CBCT acquisition. The current prototype is capable of tracking an arbitrary volume defined by the treatment planner for subsequent CBCT guidance. During gantry rotation, the collimator tracks the VOI withmore » adjustment of position and dimension. CBCT image quality was investigated as a function of collimator dimension, while maintaining the same dose to the VOI, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Dose distributions were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field CBCT distributions to quantify dose reduction and localization to the target volume. A novel method of optimizing x-ray tube current during CBCT acquisition was developed and assessed with regard to contrast-to-noise ratio (CNR) and imaging dose. Results: Measurements show that the VOI CBCT method using the dynamic blade system yields an increase in contrast-to-noise ratio by a factor of approximately 2.2. Depending upon the anatomical site, dose was reduced to 15%â80% of the full-field CBCT value along the central axis plane and down to less than 1% out of plane. The use of tube current modulation allowed for specification of a desired SNR within projection data. For approximately the same dose to the VOI, CNR was further increased by a factor of 1.2 for modulated VOI CBCT, giving a combined improvement of 2.6 compared to full-field CBCT. Conclusions: The present dynamic blade system provides significant improvements in CNR for
Prevalence and correlates of erectile dysfunction (ED) and treatment seeking for ED in Asian Men: the Asian Men's Attitudes to Life Events and Sexuality (MALES) study.
Aberrant Anatomical Variation of Maxillary Sinus Mimicking Periapical Cyst: A Report of Two Cases and Role of CBCT in Diagnosis
Staphylococcal leukotoxins are a family of β-barrel, bicomponent, pore-forming toxins with membrane-damaging functions. These bacterial exotoxins share sequence and structural homology and target several host-cell types. Leukotoxin ED (LukED) is one of these bicomponent pore-forming toxins thatStaphylococcus aureusproduces in order to suppress the ability of the host to contain the infection. The recent delineation of the important role that LukED plays inS. aureuspathogenesis and the identification of its protein receptors, combined with its presence inS. aureusmethicillin-resistant epidemic strains, establish this leukocidin as a possible target for the development of novel therapeutics. Here, the crystal structures of the water-soluble LukE andmore » LukD components of LukED have been determined. Lastly, the two structures illustrate the tertiary-structural variability with respect to the other leukotoxins while retaining the conservation of the residues involved in the interaction of the protomers in the bipartite leukotoxin in the pore complex.« less
Introduction. In numerous clinical situations it is not possible to have an exact clinical evaluation of the furcation defects. Recently the use of CBCT in periodontology has led to an increased precision in diagnostic. Aim. To determine the accuracy of CBCT as diagnostic tool of the furcation defects. Material and method. 19 patients with generalised advanced chronic periodontitis were included in this study, presenting a total of 25 lower molars with different degrees of furcation defects. Clinical and digital measurements (in mm) were performed on all the molars involved. The data obtained has been compared and statistically analysed. Results. The analysis of primary data has demonstrated that all the furcation grade II and III defects were revealed using the CBCT technique. Regarding the incipient defects (grade I Hamp < 3mm), the dimensions measured on CBCT images were slightly bigger. The results have shown that 84% of the defects detected by CBCT have been confirmed by clinical measurements. These data are similar to those revealed by other studies1. Conclusions. The use of CBCT technique in evaluation and diagnosis of human mandibular furcation defects can provide many important information regarding the size and aspect of the interradicular defect, efficiently and noninvasively. CBCT technique is used more effectively in detection of advanced furcation degree compared to incipient ones. However, the CBCT examination cannot replace, at least in this stage of development, the clinical measurements, especially the intraoperative ones, which are considered to represent the âgolden standard" in this domain.
Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol
To evaluate the spatial accuracy of a frameless cone-beam computed tomography (CBCT)-guided cranial radiosurgery (SRS) using an end-to-end (E2E) phantom test methodology. Five clinical SRS plans were mapped to an acrylic phantom containing a radiochromic film. The resulting phantom-based plans (E2E plans) were delivered four times. The phantom was setup on the treatment table with intentional misalignments, and CBCT-imaging was used to align it prior to E2E plan delivery. Comparisons (global gamma analysis) of the planned and delivered dose to the film were performed using a commercial triple-channel film dosimetry software. The necessary distance-to-agreement to achieve a 95% (DTA95) gamma passing rate for a fixed 3% dose difference provided an estimate of the spatial accuracy of CBCT-guided SRS. Systematic (â) and random (Ï) error components, as well as 95% confidence levels were derived for the DTA95 metric. The overall systematic spatial accuracy averaged over all tests was 1.4mm (SD: 0.2mm), with a corresponding 95% confidence level of 1.8mm. The systematic (Σ) and random (Ï) spatial components of the accuracy derived from the E2E tests were 0.2mm and 0.8mm, respectively. The E2E methodology used in this study allowed an estimation of the spatial accuracy of our CBCT-guided SRS procedure. Subsequently, a PTV margin of 2.0mm is currently used in our department. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SU-D-17A-02: Four-Dimensional CBCT Using Conventional CBCT Dataset and Iterative Subtraction Algorithm of a Lung Patient
Rahimi, Saeed; Mokhtari, Hadi; Ranjkesh, Bahram; Johari, Masoomeh; Frough Reyhani, Mohammad; Shahi, Shahriar; Seif Reyhani, Sina
Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3â4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeatedmore » following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning
Monteiro, Bruna Moraes; Nobrega Filho, Denys Silveira; Lopes, PatrÃcia de Medeiros Loureiro; de Sales, Marcelo Augusto Oliveira
Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy
Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), â1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), â1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), â1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest
The aim of this study was to compare the paranasal sinus volumes obtained by manual and semiautomatic imaging software programs using both CT and CBCT imaging. 121 computed tomography (CT) and 119 cone beam computed tomography (CBCT) examinations were selected from the databases of the authors' institutes. The Digital Imaging and Communications in Medicine (DICOM) images were imported into 3-dimensonal imaging software, in which hand mode and semiautomatic tracing methods were used to measure the volumes of both maxillary sinuses and the sphenoid sinus. The determined volumetric means were compared to previously published averages. Isometric CBCT-based volume determination results were closer to the real volume conditions, whereas the non-isometric CT-based volume measurements defined coherently lower volumes. By comparing the 2 volume measurement modes, the values gained from hand mode were closer to the literature data. Furthermore, CBCT-based image measurement results corresponded to the known averages. Our results suggest that CBCT images provide reliable volumetric information that can be depended on for artificial organ construction, and which may aid the guidance of the operator prior to or during the intervention.
The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires âat most one function evaluationâ in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a âsmoothed TVâ or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam⢠system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT
Impact of cone beam computed tomography (CBCT) on diagnostic thinking in endodontics of posterior teeth: A before- after study.
The purpose of this study was to translate the Edinburgh Feeding Evaluation in Dementia Questionnaire (EdFED-Q) from the original English into a Chinese language version and to assess the equivalence of the English and Chinese EdFED-Q versions. To use a directly translated instrument without minimal explanation of the procedures for determining the equivalence between the original and secondary language instrument is questionable. Ensuring equivalence of a translated Chinese version of the EdFED-Q for patients with dementia is an essential prerequisite for identifying culturally specific expressions of feeding difficulty under investigation. Phase 1 consisted of experts doing the initial translation into Chinese and then English back-translations of the questionnaire. Six experts determined the equality of the Chinese and English versions, and five monolingual nurses provided information for the C-EdFED-Q. In phase 2, two bilingual gerontological nurses rated 33 residents with dementia to determine equivalence across time. In phase 3, three groups of bilingual nurses used the Chinese, English, and finally both versions simultaneously to judge a model case's feeding behavior on the videotape. In phase 1, the rating on the equality of the items on the Chinese and English versions was 0.969. In phase 2, kappa coefficients for all items on the C-EdFED-Q and E-EdFED-Q ranged from 0.44 to 1.00. In determining the consistency of the scores for the C-EdFED-Q and E-EdFED-Q between the two raters across time, the intraclass correlation coefficient for the absolute agreement was found to range from 0.85 to 0.90. In phase 3, except for items 6 and 9, all items showed no significant difference among the three groups. Further studies to assess the relationship between constructs and to compare it with known and predicted relationships are recommended.
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Homeless patients are a vulnerable population with a higher incidence of using the emergency department (ED) for noncrisis care. Multiple charity programs target their outreach toward improving the health of homeless patients, but few data are available on the effectiveness of reducing ED recidivism. The aim of this study is to determine whether inappropriate ED use for nonemergency care may be reduced by providing charity insurance and assigning homeless patients to a primary care physician (PCP) in an outpatient clinic setting. A retrospective medical records review of homeless patients presenting to the ED and receiving treatment between July 2013 and June 2014 was completed. Appropriate vs inappropriate use of the ED was determined using the New York University ED Algorithm. The association between patients with charity care coverage, PCP assignment status, and appropriate vs inappropriate ED use was analyzed and compared. Following New York University ED Algorithm standards, 76% of all ED visits were deemed inappropriate with approximately 77% of homeless patients receiving charity care and 74% of patients with no insurance seeking noncrisis health care in the ED (P=.112). About 50% of inappropriate ED visits and 43.84% of appropriate ED visits occurred in patients with a PCP assignment (P=.019). Both charity care homeless patients and those without insurance coverage tend to use the ED for noncrisis care resulting in high rates of inappropriate ED use. Simply providing charity care and/or PCP assignment does not seem to sufficiently reduce inappropriate ED use in homeless patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction
Canal Transportation and Centering Ability of ProTaper and SafeSider in Preparation of Curved Root Canals: A CBCT Evaluation
Purpose: To evaluate the role of 2D kilovoltage (kV) imaging to complement cone beam CT (CBCT) imaging in a shift threshold based image guided radiation therapy (IGRT) strategy for conventional lung radiotherapy. Methods: A retrospective study was conducted by analyzing IGRT couch shift trends for 15 patients that received lung radiation therapy to evaluate the benefit of performing orthogonal kV imaging prior to CBCT imaging. Herein, a shift threshold based IGRT protocol was applied, which would mandate additional CBCT verification if the applied patient shifts exceeded 3 mm to avoid intraobserver variability in CBCT registration and to confirm table shifts.more » For each patient, two IGRT strategies: kV + CBCT and CBCT alone, were compared and the recorded patient shifts were categorized into whether additional CBCT acquisition would have been mandated or not. The effectiveness of either strategy was gauged by the likelihood of needing additional CBCT imaging for accurate patient set-up. Results: The use of CBCT alone was 6 times more likely to require an additional CBCT than KV+CBCT, for a 3 mm shift threshold (88% vs 14%). The likelihood of additional CBCT verification generally increased with lower shift thresholds, and was significantly lower when kV+CBCT was used (7% with 5 mm shift threshold, 36% with 2 mm threshold), than with CBCT alone (61% with 5 mm shift threshold, 97% with 2 mm threshold). With CBCT alone, treatment time increased by 2.2 min and dose increased by 1.9 cGy per fraction on average due to additional CBCT with a 3mm shift threshold. Conclusion: The benefit of kV imaging to screen for gross misalignments led to more accurate CBCT based patient localization compared with using CBCT alone. The subsequently reduced need for additional CBCT verification will minimize treatment time and result in less overall patient imaging dose.« less
Purpose: Increasing evidence suggests radiomics features extracted from computed tomography (CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer (NSCLC). This study was designed to determine whether such features can be reproducibly obtained from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to track them through treatment. Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for 68 different texture features. The volume dependence of each feature was also measured using the Spearman rankmore » correlation coefficient. Features with a high reproducibility (CCC > 0.9) that were not due to volume dependence in the patient test-retest set were further examined for their sensitivity to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms. The first phantom was a texture phantom composed of rectangular cartridges to represent different textures. Features were measured from two cartridges, shredded rubber and dense cork, in this study. The texture phantom was scanned with 19 different CBCT imagers to establish the featuresâ interscanner variability. The effect of scatter on these features was studied by surrounding the same texture phantom with scattering material (rice and solid water). The effect of respiratory motion on these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor texture insert of the shredded rubber material. The differences between scans acquired with different Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared to the mean intrapatient difference from the test-retest image set. Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence. When the Linac manufacturer and imaging
Screening and detection of delirium in older ED patients: performance of the modified Confusion Assessment Method for the Emergency Department (mCAM-ED). A two-step tool.
Zechner, A; Stock, M; Kellner, D; Ziegler, I; Keuschnigg, P; Huber, P; Mayer, U; Sedlmayer, F; Deutschmann, H; Steininger, P
Our ability to forecast ecosystems is limited by how well we parameterize ecosystem models. Direct measurements for all model parameters are not always possible and inverse estimation of these parameters through Bayesian methods is computationally costly. A solution to computational challenges of Bayesian calibration is to approximate the posterior probability surface using a Gaussian Process that emulates the complex process-based model. Here we report the integration of this method within an ecoinformatics toolbox, Predictive Ecosystem Analyzer (PEcAn), and its application with two ecosystem models: SIPNET and ED2.1. SIPNET is a simple model, allowing application of MCMC methods both to the model itself and to its emulator. We used both approaches to assimilate flux (CO2 and latent heat), soil respiration, and soil carbon data from Bartlett Experimental Forest. This comparison showed that emulator is reliable in terms of convergence to the posterior distribution. A 10000-iteration MCMC analysis with SIPNET itself required more than two orders of magnitude greater computation time than an MCMC run of same length with its emulator. This difference would be greater for a more computationally demanding model. Validation of the emulator-calibrated SIPNET against both the assimilated data and out-of-sample data showed improved fit and reduced uncertainty around model predictions. We next applied the validated emulator method to the ED2, whose complexity precludes standard Bayesian data assimilation. We used the ED2 emulator to assimilate demographic data from a network of inventory plots. For validation of the calibrated ED2, we compared the model to results from Empirical Succession Mapping (ESM), a novel synthesis of successional patterns in Forest Inventory and Analysis data. Our results revealed that while the pre-assimilation ED2 formulation cannot capture the emergent demographic patterns from ESM analysis, constrained model parameters controlling demographic
The extent to which the Ph.D. and/or Ed.D. programs have been adapted to assist in preparing students for college teaching was surveyed. Of 309 universities, 122 responded, and of these, 72 had no adaptations. However, 50 universities indicated the availability, in at least one discipline or field, of modifications in the Ph.D. and/or Ed.D.â¦
The purposes, structure, and component parts of the newly formed Department of Education (ED) organizations from which educational research programs will be administered are discussed. As the climate surrounding ED changes, opportunities to take advantage of the elevated status of research will be presented. (Author/RL)
Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate themore » effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authorsâ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 Â
Some health systems are piloting telemedicine solutions in the ED to address crowding and decrease patient wait times. One new program, implemented at the Lisa Perry Emergency Center at New York Presbyterian (NYP) Weill Cornell Medical Center in New York, involves offering low-acuity patients the option of visiting an off-site physician via telemedicine hookup. Administrators note that the approach can get patients in and out of the ED within 30 minutes, and patients have thus far been highly satisfied with the approach. However, an earlier telemedicine program piloted at the University of San Diego Health Systemâs (UCSD) Hillcrest Hospital in 2013 got bogged down due to administrative and insurance reimbursement hurdles, although the approach showed enough promise that there is interest in restarting the program. In the NYP program, patients are identified as appropriate candidates for the program at triage. They can opt to be seen remotely or through traditional means in the EDâs fast-track section. Administrators note that patients with complex problems requiring extensive workups are not suitable for the telemedicine approach. The most challenging aspect of implementing a successful telemedicine program in the ED is getting the workflows right, according to administrators. An earlier ED-based telemedicine program piloted at UCSD ran into difficulties because the model required the involvement of two physicians, and some insurers did not want to pay for the telemedicine visits. However, patients were receptive.
Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.
Purpose: This study is to evaluate the tumor regression over the course of EBRT treatment and to determine the difference of tumor reduction for stage III lung squamous cell cancer (SCC) and adenocarcinoma using CBCT. Methods: Twenty three stage III lung cancer patients treated in our clinic who had daily cone beam CT (CBCT) were selected for this study (16 adenocarcinoma and 7 SCC cases). Patients received prescription dose in the range of 50Gyâ71.4Gy (mean =60.3Gy, median =50Gy) at 1.8Gy or 2Gy per fraction. Treatments spanned over a minimum of five weeks. Initial mean volume of the gross tumor volumemore » (GTV) was 123cc (range = 14.7ccâ353.3cc). For this study, we choose six sets of CBCTs at an interval of one week, starting from the first fraction of treatment. Daily CBCTs from treatment linac computer were transferred to MIM Software version 6.0. An experienced physician contoured the primary GTV on each slices of the CBCT for these patients. Results: A consistent regression of the GTVs was observed in all patients, except in one patient (adeno case) where GTV did not change. Weekly volumetric reduction was in the range of 11.2%â16.6%. Maximum reductions were noticed in the first two weeks of the treatment cycle; mean overall (for adeno+SCC) reductions were 16.6%, 14.2% in week-1 and week-2, respectively. Mean reduction over five weeks of treatment was 49.8% (range = 0.1%â75.5%). Higher reduction was observed in SCC patients as compare to adenocarcinoma cases (54.9% vs. 47.6%); however, the difference was not statistically significant (p-value > 0.05). Conclusion: Large regression of tumors over the course of EBRT for stage III lung cancer patients was observed. Both SCC and adenocarcinoma responded well; overall reduction for SCC cases was higher. A future study is warranted for determining the co-relation between tumor volume reduction and treatment outcome.« less
As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques). PMID:25263643
RTCA DO-178B/EUROCAE ED-12B is the industry-accepted guidance for determining that the software aspects of airborne systems and equipment comply with airworthiness requirements. DO-178B/ED-12B, published in 1992, is being updated to DO-178C/ED-12C. Nearly six years in the making, DO- 178C/ED-12C is expected to be completed in December 2010. It will be accompanied by a new set of supplements providing additional and much-needed guidance on tool qualification, model based development and verification, objectoriented technologies, and formal methods. Written by a member of the DO-178C/ED-12C editorial team who is also a practising software developer and verifier, this paper provides a practitioner's view of the new standard and its supplements. It explains how they will affect your organisation, focusing on the practical implications of the many changes between DO-178B/ED-12B and DO-178C/ED-12C.
The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7Â years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.
This Position Statement represents a consensus of an expert committee convened by the European Society of Endodontology (ESE) on the use of Cone Beam Computed Tomography (CBCT). The statement is based on the current scientific evidence, and provides the clinician with evidence-based criteria on when to use CBCT in Endodontics. Given the dynamic and changing nature of research, development of new devices and clinical practice relating to CBCT, this Position Statement will be updated within 3 years, or before that time should new evidence become available. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
To determine whether the accuracy of CBCT based IGRT and ART lung SBRT treatments may require extra quality assurance (QA) steps. During CBCT Rando phantom acquisition we detected an unexpected â¼2° image rotation when comparing the CW and CCW acquired scans. Misregistered angular coordinates may Result in a rotated reconstructed image and the target localization may lead to an under- or over-dosage of the target volume (TV) and organs at risk (OARs). The effect of image rotation on CBCT-guided lung SBRT was retrospectively examined in a group of six patients treated at our institution. Patient CT sets were rotated by 1,2, and 3°. Treatment plans were recalculated using these rotated images to examine changes of dose-volume histogram indicators for IGRT and ART guided treatments. C++ simulations were run to evaluate the effect of CBCT image rotation. We determined through mathematical analysis that the dose coverage of the TV is dependent on its shape, location and orientation relative to isocenter. Dosimetric evaluation of lung SBRT patients showed that even for 1< à 2 <3°, changes in D95 to the PTV were from 2.3 ± 2.1 to 11.5 ± 3.9% for IGRT and from 8.5 ± 8.4 to 16.6 ± 8.0% for ART. Significant changes were also detected at critical structure level. When IGRT and ART are employed for lung SBRT treatments, significant dosimetric changes may Result from the rotation of CBCT image data sets. The extent of alterations in dose indicators depends on both the shape of the TV and its relative location to isocenter. Based on our results, angular alignment of CBCT to <1° is essential in maintaining accurate dose delivery of IGRT and ART based lung SBRT treatments. © 2012 American Association of Physicists in Medicine.
MedEdPORTAL is an online publication service provided at no charge by the Association of American Medical Colleges (AAMC). The intent is to promote collaboration and educational scholarship by helping educators publish and share educational resources. With MedEdPORTAL, users can quickly locate high-quality, peer-reviewed teaching materials in bothâ¦
CBCT volumetric coverage extension using a pair of complementary circular scans with complementary kV detector lateral and longitudinal offsets
Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES)
The study aimed to determine if emergency department (ED)-administered antibiotics for patients discharged home with nonpneumonia acute respiratory tract infections (ARIs) have increased since national pneumonia performance measure implementation, including antibiotic administration within 4 hours of arrival. Time series analysis. Six university and 7 Veterans Administration EDs participating in the Improving Antibiotic Use for Acute Care Treatment (IMPAACT) trial (randomized educational intervention to reduce antibiotics for bronchitis). Randomly selected adult (age >18 years) ED visits for acute cough, diagnosed with nonpneumonia ARIs, discharged home during winters (November-February) of 2003 to 2007. Time trend in ED-administered antibiotics, adjusted for patient demographics, comorbidities, vital signs, ED length of stay, IMPAACT intervention status, geographic region, Veterans Administration/university setting, and site and provider level clustering. Six thousand four hundred seventy-six met study criteria. Three hundred ninety-four (6.1%) received ED-administered antibiotics. Emergency department-administered antibiotics did not increase across the study period among all IMPAACT sites (odds ratio [OR], 0.88; 95% confidence interval [CI], 0.76-1.01) after adjusting for age, congestive heart failure history, temperature higher than 100 degrees F, heart rate more than 100, blood cultures obtained, diagnoses, and ED length of stay. The ED-administered antibiotic rate decreased at IMPAACT intervention (OR, 0.80; 95% CI, 0.69-0.93) but not nonintervention sites (OR, 1.04; 95% CI, 0.91-1.19). Adjusted proportions receiving ED-administered antibiotics were 6.1% (95% CI, 2.7%-13.2%) for 2003 to 2004; 4.8% (95% CI, 2.2%-10.0%) for 2004 to 2005; 4.6% (95% CI, 2.7%-7.8%) for 2005 to 2006; and 4.2% (95% CI, 2.2%-8.0%) for 2006 to 2007. Emergency department-administered antibiotics did not increase for patients with acute cough discharged home with nonpneumonia ARIs since
The aim of this study was to analyze the influence of filters (algorithms) to improve the image of Cone Beam Computed Tomography (CBCT) in diagnosis of osteolytic lesions of the mandible, in order to establish the protocols for viewing images more suitable for CBCT diagnostics. 15 dry mandibles in which perforations were performed, simulating lesions, were submitted to CBCT examination. Two examiners analyzed the images, using filters to improve image Hard, Normal, and Very Sharp, contained in the iCAT Vision software, and protocols for assessment: axial; sagittal and coronal; and axial, sagittal and coronal planes simultaneously (MPR), on two occasions. The sensitivity and specificity (validity) of the cone beam computed tomography (CBCT) have been demonstrated as the values achieved were above 75% for sensitivity and above 85% for specificity, reaching around 95.5% of sensitivity and 99% of specificity when we used the appropriate observation protocol. It was concluded that the use of filters (algorithms) to improve the CBCT image influences the diagnosis, due to the fact that all measured values were correspondingly higher when it was used the filter Very Sharp, which justifies its use for clinical activities, followed by Hard and Normal filters, in order of decreasing values. PMID:22956955
Purpose: To investigate the accuracy and feasibility of dose calculations using kilovoltage cone beam computed tomography in cervical cancer radiotherapy using a correction algorithm. Methods: The Hounsfield units (HU) and electron density (HU-density) curve was obtained for both planning CT (pCT) and kilovoltage cone beam CT (CBCT) using a CIRS-062 calibration phantom. The pCT and kV-CBCT images have different HU values, and if the HU-density curve of CBCT was directly used to calculate dose in CBCT images may have a deviation on dose distribution. It is necessary to normalize the different HU values between pCT and CBCT. A HU correctionmore » algorithm was used for CBCT images (cCBCT). Fifteen intensity-modulated radiation therapy (IMRT) plans of cervical cancer were chosen, and the plans were transferred to the pCT and cCBCT data sets without any changes for dose calculations. Phantom and patient studies were carried out. The dose differences and dose distributions were compared between cCBCT plan and pCT plan. Results: The HU number of CBCT was measured by several times, and the maximum change was less than 2%. To compare with pCT, the CBCT and cCBCT has a discrepancy, the dose differences in CBCT and cCBCT images were 2.48%±0.65% (range: 1.3%â¼3.8%) and 0.48%±0.21% (range: 0.1%â¼0.82%) for phantom study, respectively. For dose calculation in patient images, the dose differences were 2.25%±0.43% (range: 1.4%â¼3.4%) and 0.63%±0.35% (range: 0.13%â¼0.97%), respectively. And for the dose distributions, the passing rate of cCBCT was higher than the CBCTs. Conclusion: The CBCT image for dose calculation is feasible in cervical cancer radiotherapy, and the correction algorithm offers acceptable accuracy. It will become a useful tool for adaptive radiation therapy.« less
Dual detector VOI scatter CBCT is similar to dual detector VOI CBCT except that during the high resolution scan, the low resolution flat panel detector is also used to capture the scattered photons. Simulations show a potential use of scatter to diagnose suspicious VOIs. Energy integrated signals due to scatter (EISs) were computed for a specific imaging task involving a malignant lesion and was labelled as a hypothetical experiment (expt) result. The signal was compared to predictions (pred) using benign and malignant lesions. The ÎEISs=EISs|expt - EISs|pred displayed eye catching diffraction structure when the prediction calculation used a benign lesion. The structure occurred even when the phantom compositions were different for prediction and experiment calculations. Since the diffraction structure has a circularly symmetric behaviour because the tissues are amorphous in nature, the 2D ÎEISs patterns were transformed to 1D signals. The 1D signals were obtained by calculating the mean ÎEISs signals in rings. The mean pixel values were a function of the momentum transfer argument q = 4Ï sin(θ/2)/λ which ranged from 12 to 46 nm-1. The 1D signals correlated well with the 2D profiles. Of particular interest were scatter signatures between q = 20 and 30 nm-1 where malignant tissue is predicted to scatter more than benign fibroglandular tissue. The 1D diffraction signatures could allow a better method to diagnose a suspicious lesion during dual detector scatter VOI CBCT.
Developing and maintaining a "completion mindset" is a necessary mental condition for online educational doctorate (EdD) and educational specialist (EdS) students to obtain their advanced degrees. The purpose of this research study was to examine the effect of a neuroeducational intervention on a volunteer convenience sample of EdD andâ¦
Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors' in-house developed clinical cbct reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the
More than 11 years Radiometric Calibration Coefficients (RCC) derived from onboard and vicarious calibrations are compared together with cross comparison to the well calibrated MODIS RCC. Fault Tree Analysis (FTA) is also conducted for clarification of possible causes of the RCC degradation together with sensitivity analysis for vicarious calibration. One of the suspects of causes of RCC degradation is clarified through FTA. Test site dependency on vicarious calibration is quite obvious. It is because of the vicarious calibration RCC is sensitive to surface reflectance measurement accuracy, not atmospheric optical depth. The results from cross calibration with MODIS support that significant sensitivity of surface reflectance measurements on vicarious calibration.
In this multi-centre randomized controlled trial (RCT) we compared modified mentalisation-based treatment (MBT-ED) to specialist supportive clinical management (SSCM-ED) in patients with eating disorders (EDs) and borderline personality disorder symptoms (BPD). This group of patients presents complex challenges to clinical services, and a treatment which addresses their multiple problems has the potential to improve outcome. MBT has been shown to be effective in improving outcome in patients with BPD, but its use has not been reported in ED. Sixty-eight eligible participants were randomised to MBT-ED or SSCM-ED. The primary outcome measure was the global score on the Eating Disorder Examination. Secondary outcomes included measures of BPD symptoms (the Zanarini Rating Scale for Borderline Personality Disorder), general psychiatric state, quality of life and service utilisation. Participants were assessed at baseline and at 6, 12 and 18Â months after randomisation. Analysis was performed using linear mixed models. Only 15 participants (22Â %) completed the 18Â month follow-up. Early drop-out occurred significantly more in the SSCM-ED group. Drop-out did not vary with treatment model later in therapy and was sometimes attributed to participants moving away. There was higher drop--out amongst smokers and those with higher neuroticism scores. 47.1Â % of participants in the MBT-ED arm and 37.1Â % in the SSCM-ED arm attended at least 50Â % of therapy sessions offered. Amongst those remaining in the trial, at 12 and 18Â months MBT-ED was associated with a greater reduction in Shape Concern and Weight Concern in the Eating Disorder Examination compared to SSCM-ED. At 6, 12 and 18Â months there was a decline of ED and BPD symptoms in both groups combined. Ten participants were reported as having had adverse events during the trial, mostly self-harm, and there was one death, attributed as 'unexplained' by the coroner. The high drop-out rate made interpretation of the results
Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866
Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman
This article reports a self-study that analyzes my experience as a teacher educator navigating a turbulent educational landscape with the advent of edTPA. The data consist of my journal entries, the syllabi, handouts, work submitted by my students, and course evaluations. Data were analyzed by using an inductive process to describe how the edTPAâ¦
Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scanmore » based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7Ï). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (Ï) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.« less
Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organâs fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion modelâs accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.
Evaluation of orthodontically induced external root resorption following orthodontic treatment using cone beam computed tomography (CBCT): a systematic review and meta-analysis.
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA. PMID:26085710
Introduction: Maintaining the original central canal path is an important parameter in efficient root canal preparation. Instruments causing minimal changes in original canal path are preferred for this purpose. This study sought to compare canal transportation and centering ability of ProTaper and SafeSider instruments in curved mesiobuccal root canals of mandibular first molars using cone beam computed tomography (CBCT). Methods and Materials : In this experimental study, 30 mesiobuccal root canals of extracted human mandibular first molars with 20° to 40° curvature were randomly divided into two groups (n=15). After mounting in putty, preoperative CBCT scans were obtained of teeth. Root canals in group A were shaped using S1, S2, F1 and F2 of ProTaper system. Root canals in group B were instrumented to size 25 using SafeSider system according to the manufacturersâ instructions. Postoperative CBCT scans were then obtained. The distance between the external root surface and internal canal wall was measured at the mesial and distal at 1, 3 and 7 mm from the apex. The values measured on primary and secondary CBCT scans were compared to assess possible changes in original central canal path and canal transportation. Data were compared using the t-test and repeated measure ANOVA. Results: ProTaper and SafeSider were significantly different in terms of canal transportation and centering ability, and ProTaper was significantly superior to SafeSider in this respect (P<0.001). Conclusion: ProTaper (in contrast to SafeSider) is well capable of maintaining the original central canal path with the least amount of transportation. PMID:29707022
A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.
Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.
The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71ââ±ââ0.07 mGy/CBCT and 0.70ââ±ââ0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
Purpose: CTDI measurements, useful for characterizing the x-ray output for multi-detector CT (MDCT), require a 360° rotation of the gantry; this presents a problem for cone beam CT (CBCT) due to its limited angular rotation. The purpose of this work is to demonstrate a methodology for overcoming this limited angular rotation so that CTDI measurements can also be made on CBCT systems making it possible to compare the radiation output from both types of system with a common metric. Methods: The symmetry of the CTDI phantom allows a 360° CTDI measurement to be replaced with two 180° measurements. A pencilmore » chamber with a real-time digitizer was placed at the center of the head phantom (16 cm, PMMA) and the resulting exposure measurement from a 180° acquisition was doubled. A pair of edge measurements, each obtained with the gantry passing through the same 180 arc, was obtained with the pencil chamber at opposite edges of the diameter of the phantom and then summed. The method was demonstrated on a clinical CT scanner (Philips, Brilliance6) and then implemented on an interventional system (Siemens, Axiom Artis). Results: The equivalent CTDI measurement agreed with the conventional CTDI measurement within 8%. The discrepancy in the two measurements is largely attributed to uncertainties in cropping the waveform to a 180°acquisition. (Note: Because of the reduced fan angle in the CBCT, CTDI is not directly comparable to MDCT values when a 32 cm phantom is used.) Conclusion: The symmetry-based CTDI measurement is an equivalent measurement to the conventional CTDI measurement when the fan angle is large enough to encompass the phantom diameter. This allows a familiar metric of radiation output to be employed on systems with a limited angular rotation.« less
Matherne, Camden E.; Tanofsky-Kraff, Marian; Altschul, Anne M.; Shank, Lisa M.; Schvey, Natasha A.; Brady, Sheila M.; Galescu, Ovidiu; Demidowich, Andrew P.; Yanovski, Susan Z.; Yanovski, Jack A.
Accuracy of templates for navigated implantation made by rapid prototyping with DICOM datasets of cone beam computer tomography (CBCT).
Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference ofmore » +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.« less
This article aims to discuss current evidence and recommendations for cone-beam computed tomography (CBCT) in Orthodontics. In comparison to conventional radiograph, CBCT has higher radiation doses and, for this reason, is not a standard method of diagnosis in Orthodontics. Routine use of CBCT in substitution to conventional radiograph is considered an unaccepted practice. CBCT should be indicated with criteria only after clinical examination has been performed and when the benefits for diagnosis and treatment planning exceed the risks of a greater radiation dose. It should be requested only when there is a potential to provide new information not demonstrated by conventional scans, when it modifies treatment plan or favors treatment execution. The most frequent indication of CBCT in Orthodontics, with some evidence on its clinical efficacy, includes retained/impacted permanent teeth; severe craniofacial anomalies; severe facial discrepancies with indication of orthodontic-surgical treatment; and bone irregularities or malformation of TMJ accompanied by signs and symptoms. In exceptional cases of adult patients when critical tooth movement are planned in regions with deficient buccolingual thickness of the alveolar ridge, CBCT can be indicated provided that there is a perspective of changes in orthodontic treatment planning. PMID:25715727
Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study
To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion model extracted by a global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural PCA method was developed to build a structural motion model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30Â mm diameter lesion was simulated with various anatomical and respiratory changes from planning 4D-CT to on-board volume to evaluate the method. The estimation accuracy was evaluated by the volume percent difference (VPD)/center-of-mass-shift (COMS) between lesions in the estimated and "ground-truth" on-board 4D-CBCT. Different on-board projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against three lung patients. The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely
Through this study the author investigates the relationship between self-esteem and emotional intelligence among B.Ed trainees of Tsunami affected coastal belt of Alappey district of Kerala, India. Stream of study, marital status and age based comparisons were made among the B.Ed trainees. 92 B.Ed trainees were the participants in the study. Itâ¦
Coughlan, Eoin; Geary, Una; Wakai, Abel; O'Sullivan, Ronan; Browne, John; McAuliffe, Eilish; Ward, Marie; McDaid, Fiona; Deasy, Conor
Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6Â weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4Â mm. Additionally, 63.57% of landmarks had a mean error of <3Â mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.
Monteiro, Bruna Moraes; Nobrega Filho, Denys Silveira; Lopes, PatrÃcia de Medeiros Loureiro; de Sales, Marcelo Augusto Oliveira
Purpose: To combine orthogonal kilo-voltage (kV) and Mega-voltage (MV) projection data for short scan cone-beam CT to reduce imaging time on current radiation treatment systems, using a calibration-free gain correction method. Methods: Combining two orthogonal projection data sets for kV and MV imaging hardware can reduce the scan angle to as small as 110° (90°+fan) such that the total scan time is â¼18 seconds, or within a breath hold. To obtain an accurate reconstruction, the MV projection data is first linearly corrected using linear regression using the redundant data from the start and end of the sinogram, and then themore » combined data is reconstructed using the FDK method. To correct for the different changes of attenuation coefficients in kV/MV between soft tissue and bone, the forward projection of the segmented bone and soft tissue from the first reconstruction in the redundant region are added to the linear regression model. The MV data is corrected again using the additional information from the segmented image, and combined with kV for a second FDK reconstruction. We simulated polychromatic 120 kVp (conventional a-Si EPID with CsI) and 2.5 MVp (prototype high-DQE MV detector) projection data with Poisson noise using the XCAT phantom. The gain correction and combined kV/MV short scan reconstructions were tested with head and thorax cases, and simple contrast-to-noise ratio measurements were made in a low-contrast pattern in the head. Results: The FDK reconstruction using the proposed gain correction method can effectively reduce artifacts caused by the differences of attenuation coefficients in the kV/MV data. The CNRs of the short scans for kV, MV, and kV/MV are 5.0, 2.6 and 3.4 respectively. The proposed gain correction method also works with truncated projections. Conclusion: A novel gain correction and reconstruction method was developed to generate short scan CBCT from orthogonal kV/MV projections. This work is supported by NIH Grant 5R01CA
Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.
to determine the ED90 (minimum effective dose in 90% of patients) of sugammadex for the reversal of rocuronium-induced moderate neuromuscular blockade (NMB) in patients with grade III obesity undergoing bariatric surgery. we conducted a prospective study with the biased coin up-and-down sequential design. We chosen the following doses: 2.0mg/Kg, 2.2mg/Kg, 2.4mg/Kg, 2.6mg/Kg, 2.8mg/Kg. The complete reversal of rocuronium-induced NMB considered a T4/T1 ratio â¥0.9 as measured by TOF. After induction of general anesthesia and calibration of the peripheral nerve stimulator and accelerometer, we injected rocuronium 0.6mg/kg. We administered propofol and remifentanil by continuous infusion, and intermittent boluses of rocuronium throughout the procedure. we evaluated 31 patients, of whom 26 had displayed successful reversal of the NMB with sugammadex, and failure in five. The mean time to complete moderate NMB reversal was 213 seconds (172-300, median 25-75%). The ED90 of sugammadex calculated by regression was 2.39mg/kg, with a 95% confidence interval of 2.27-2.46 mg/kg. the ED90 of sugammadex in patients with grade III obesity or higher was 2.39mg/kg. determinar a ED90 (dose mÃnima eficaz em 90% dos pacientes) de sugamadex para a reversão de bloqueio neuromuscular (BNM) moderado induzido pelo rocurônio em pacientes com obesidade grau III submetidos à cirurgia bariátrica. estudo prospectivo com o método de projeção sequencial para cima e para baixo da moeda enviesada. As seguintes doses foram escolhidas: 2,0mg/kg-1, 2,2mg/kg-1, 2,4mg/kg-1, 2,6mg/kg-1, 2,8mg/kg-1. A reversão completa de BNM induzido por rocurônio considerou uma relação T4/T1 â¥0,9 na medida do TOF. Após a indução da anestesia geral e calibração do estimulador de nervo periférico e acelerômetro, rocurônio 0,6mg/kg-1 foi injetado. Infusão contÃnua de propofol e remifentanil, e bolus intermitente de rocurônio foram injetados durante todo o procedimento. trinta e um pacientes foram
Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Occupational stress is a major modern health and safety challenges. While the ED is known to be a high-pressure environment, the specific organisational stressors which affect ED staff have not been established. We conducted a systematic review of literature examining the sources of organisational stress in the ED, their link to adverse health outcomes and interventions designed to address them. A narrative review of contextual factors that may contribute to occupational stress was also performed. All articles written in English, French or Spanish were eligible for conclusion. Study quality was graded using a modified version of the Newcastle-Ottawa Scale. Twenty-five full-text articles were eligible for inclusion in our systematic review. Most were of moderate quality, with two low-quality and two high-quality studies, respectively. While high demand and low job control were commonly featured, other studies demonstrated the role of insufficient support at work, effort-reward imbalance and organisational injustice in the development of adverse health and occupational outcomes. We found only one intervention in a peer-reviewed journal evaluating a stress reduction programme in ED staff. Our review provides a guide to developing interventions that target the origins of stress in the ED. It suggests that those which reduce demand and increase workers' control over their job, improve managerial support, establish better working relationships and make workers' feel more valued for their efforts could be beneficial. We have detailed examples of successful interventions from other fields which may be applicable to this setting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl
The Temporomandibular Joint (TMJ) is a ginglymo-diarthrodial joint known to be the most complex joint in human body. Growth disturbances, owing to genetic influences or trauma during the intrauterine life or during early developmental age may lead to morphological and functional variations in the mandible resulting in developmental anomaly. We report a rare case of altered sigmoid notch morphology on the right side and condylar hypoplasia on the left side, not related to any clear pathological disorder. Cone Beam Computed Tomography (CBCT) was helpful in evaluating this case. This case of unknown aetiology was thoroughly examined; based on clinical and radiographic findings, we suggest that this case is of congenital origin. PMID:26816996
Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less
In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.
The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.
... Talking to Your Kids About VirginityTalking to Your Kids About Sex Home Diseases and Conditions Erectile Dysfunction (ED) Condition ... Well-Being Mental Health Sex and Birth Control Sex and Sexuality Birth Control ... and Toddlers Kids and Teens Pregnancy and Childbirth Women Men Seniors ...
Staphylococcal leukotoxins are a family of β-barrel, bicomponent, pore-forming toxins with membrane-damaging functions. These bacterial exotoxins share sequence and structural homology and target several host-cell types. Leukotoxin ED (LukED) is one of these bicomponent pore-forming toxins thatStaphylococcus aureusproduces in order to suppress the ability of the host to contain the infection. The recent delineation of the important role that LukED plays inS. aureuspathogenesis and the identification of its protein receptors, combined with its presence inS. aureusmethicillin-resistant epidemic strains, establish this leukocidin as a possible target for the development of novel therapeutics. Here, the crystal structures of the water-soluble LukE andmore » LukD components of LukED have been determined. Lastly, the two structures illustrate the tertiary-structural variability with respect to the other leukotoxins while retaining the conservation of the residues involved in the interaction of the protomers in the bipartite leukotoxin in the pore complex.« less
Background: Little is known about the population-based burden of ED care for COPD. Methods: We analyzed statewide ED surveillance system data to quantify the frequency of COPD-related ED visits, hospital admissions, and comorbidities. Results: In 2008 to 2009 in North Carolina, 97,511 COPD-related ED visits were made by adults ⥠45 years of age, at an annual rate of 13.8 ED visits/1,000 person-years. Among patients with COPD (n = 33,799), 7% and 28% had a COPD-related return ED visit within a 30- and 365-day period of their index visit, respectively. Compared with patients on private insurance, Medicare, Medicaid, and noninsured patients were more likely to have a COPD-related return visit within 30 and 365 days and have three or more COPD-related visits within 365 days. There were no differences in return visits by sex. Fifty-one percent of patients with COPD were admitted to the hospital from the index ED visit. Subsequent hospital admission risk in the cohort increased with age, peaking at 65 to 69 years (risk ratio [RR], 1.41; 95% CI, 1.26-1.57); there was no difference by sex. Patients with congestive heart failure (RR, 1.29; 95% CI, 1.22-1.37), substance-related disorders (RR, 1.35; 95% CI, 1.13-1.60), or respiratory failure/supplemental oxygen (RR, 1.25; 95% CI, 1.19-1.31) were more likely to have a subsequent hospital admission compared with patients without these comorbidities. Conclusions: The population-based burden of COPD-related care in the ED is significant. Further research is needed to understand variations in COPD-related ED visits and hospital admissions. PMID:23579283
To assess the impact of patient movement characteristics and metal/radiopaque materials in the field-of-view (FOV) on CBCT image quality and interpretability. 162 CBCT examinations were performed in 134 consecutive (i.e. prospective data collection) patients (age average: 27.2 years; range: 9-73). An accelerometer-gyroscope system registered patient's head position during examination. The threshold for movement definition was set at â¥0.5-mm movement distance based on accelerometer-gyroscope recording. Movement complexity was defined as uniplanar/multiplanar. Three observers scored independently: presence of stripe (i.e. streak) artefacts (absent/"enamel stripes"/"metal stripes"/"movement stripes"), overall unsharpness (absent/present) and image interpretability (interpretable/not interpretable). Kappa statistics assessed interobserver agreement. Ï 2 tests analysed whether movement distance, movement complexity and metal/radiopaque material in the FOV affected image quality and image interpretability. Relevant risk factors (p ⤠0.20) were entered into a multivariate logistic regression analysis with "not interpretable" as the outcome. Interobserver agreement for image interpretability was good (average = 0.65). Movement distance and presence of metal/radiopaque materials significantly affected image quality and interpretability. There were 22-28 cases, in which the observers stated the image was not interpretable. Small movements (i.e. <3 mm) did not significantly affect image interpretability. For movements ⥠3 mm, the risk that a case was scored as "not interpretable" was significantly (p ⤠0.05) increased [OR 3.2-11.3; 95% CI (0.70-65.47)]. Metal/radiopaque material was also a significant (p ⤠0.05) risk factor (OR 3.61-5.05). Patient movement â¥3 mm and metal/radiopaque material in the FOV significantly affected CBCT image quality and interpretability.
Quantitative content analysis of a body of research not only helps budding researchers understand the culture, language, and expectations of scholarship, it helps identify deficiencies and inform policy and practice. Because of these benefits, an analysis of a census of 980 Mercer University MEd, EdS, and doctoral theses was conducted. Each thesisâ¦
Potential of dosage reduction in cone-beam-computed tomography (CBCT) for radiological diagnostics of the paranasal sinuses.
Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, âtime is brainâ in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a âone-stop-shopâ in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac
Periapical cemento-osseous dysplasia (PCOD) is a subtype of cemento-osseous dysplasia that usually occurs in middle-aged black women. This report described a case of a 45-year-old Iranian woman who was diagnosed with PCOD on the basis of cone beam computed tomographic (CBCT) findings. CBCT enabled detailed visualization of the bone changes. This report described the special radiographic characteristics of PCOD, including discontinuity of the lingual cortex on the CBCT sectional and three-dimensional images. PMID:24083217
Association between sella turcica bridging and palatal canine impaction: Evaluation using lateral cephalograms and CBCT.
The primary objective of this study was to compare the accuracy and time efficiency of an indirect and direct digitalization workflow with that of a three-dimensional (3D) printer in order to identify the most suitable method for orthodontic use. A master model was measured with a coordinate measuring instrument. The distances measured were the intercanine width, the intermolar width, and the dental arch length. Sixty-four scans were taken with each of the desktop scanners R900 and R700 (3Shape), the intraoral scanner TRIOS Color Pod (3Shape), and the Promax 3D Mid cone beam computed tomography (CBCT) unit (Planmeca). All scans were measured with measuring software. One scan was selected and printed 37 times on the D35 stereolithographic 3D printer (Innovation MediTech). The printed models were measured again using the coordinate measuring instrument. The most accurate results were obtained by the R900. The R700 and the TRIOS intraoral scanner showed comparable results. CBCT-3D-rendering with the Promax 3D Mid CBCT unit revealed significantly higher accuracy with regard to dental casts than dental impressions. 3D printing offered a significantly higher level of deviation than digitalization with desktop scanners or an intraoral scanner. The chairside time required for digital impressions was 27% longer than for conventional impressions. Conventional impressions, model casting, and optional digitization with desktop scanners remains the recommended workflow process. For orthodontic demands, intraoral scanners are a useful alternative for full-arch scans. For prosthodontic use, the scanning scope should be less than one quadrant and three additional teeth.
To describe the use of open-source software for the post-processing of CBCT imaging for the assessment of periapical lesions development after endodontic treatment. CBCT scans were retrieved from endodontic records of two patients. Three-dimensional virtual models, voxel counting, volumetric measurement (mm 3 ) and mean intensity of the periapical lesion were performed with ITK-SNAP v. 3.0 software. Three-dimensional models of the lesions were aligned and overlapped through the MeshLab software, which performed an automatic recording of the anatomical structures, based on the best fit. Qualitative and quantitative analyses of the changes in lesions size after treatment were performed with the 3DMeshMetric software. The ITK-SNAP v. 3.0 showed the smaller value corresponding to the voxel count and the volume of the lesion segmented in yellow, indicating reduction in volume of the lesion after the treatment. A higher value of the mean intensity of the segmented image in yellow was also observed, which suggested new bone formation. Colour mapping and "point value" tool allowed the visualization of the reduction of periapical lesions in several regions. Researchers and clinicians in the monitoring of endodontic periapical lesions have the opportunity to use open-source software.
Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was usedmore » to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for
Delirium is frequent in older Emergency Department (ED) patients, but detection rates for delirium in the ED are low. To aid in identifying delirium, we developed and implemented a two-step systematic delirium screening and assessment tool in our ED: the modified Confusion Assessment Method for the Emergency Department (mCAM-ED). Components of the mCAM-ED include: (1) screening for inattention, the main feature of delirium, which was performed with the Months Backwards Test (MBT); (2) delirium assessment based on a structured interview with questions from the Mental Status Questionnaire by Kahn et al. and the Comprehension Test by Hart et al. The aims of our study are (1) to investigate the performance criteria of the mCAM-ED tool in a consecutive sample of older ED patients, (2) to evaluate the performance of the mCAM-ED in patients with and without dementia and (3) to test whether this tool is efficient in keeping evaluation time to a minimum and reducing screening and assessment burden on the patient. For this prospective validation study, we recruited a consecutive sample of ED patients aged 65 and older during an 11-day period in November 2015. Trained nurses assessed patients with the mCAM-ED. Results were compared to the reference standard [i.e. the geriatricians' delirium diagnosis based on the criteria of the Text Revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR)]. Performance criteria were computed. We included 286 consecutive ED patients aged 65 and older. The median age was 80.02 (Q 1 Â =Â 72.15; Q 3 Â =Â 86.76), 58.7% of included patients were female, 14.3% had dementia. We found a delirium prevalence of 7.0%. In patients with dementia, specificity and positive likelihood ratio were lower. When compared to the reference standard, delirium assessment with the mCAM-ED has a 0.98 specificity and a 39.9 positive likelihood ratio. In 80.0% of all cases, the first step of the mCAM-ED, i.e. screening for inattention with the
The advantages of kilovoltage cone beam CT (kV CBCT) imaging over electronic portal imaging device (EPID) such as accurate 3D anatomy, soft tissue visualization, fast rigid registration and enhanced precision on patient positioning has lead to its increasing use in clinics. The benefits of this imaging technique are at the cost of increasing the dose to healthy surrounding organs. Our center has moved toward the use of daily partial rotation kV CBCT to restrict the dose to healthy tissues. This study aims to better quantify radiation doses from different image-guidance techniques such as tangential EPID, complete and partial kV CBCTmore » for breast treatments. Cross-calibrated ionization chambers and kV calibrated Gafchromic films were used to measure the dose to the heart, lungs, breasts and skin. It was found that performing partial kV CBCT decreases the heart dose by about 36%, the lungs dose by 31%, the contralateral breast dose by 41% and the ipsilateral breast dose by 43% when compared to a full rotation CBCT. The skin dose measured for a full rotation CBCT was about 0.8 cGy for the contralateral breast and about 0.3 cGy for the ipsilateral breast. The study is still ongoing and results on skin doses for partial rotation kV CBCT as well as for tangential EPID images are upcoming.« less
One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
Diagnosis of skeletal age in adolescents helps orthodontists select and time treatments. Currently this is done using lateral cephalometric radiographs. This study evaluates the application of the conventional method in cone-beam computer tomographic (CBCT) images to bring forth assessment of skeletal maturation in three-dimensions. Ninety-eight lateral cephalometric radiographs and CBCT scans were collected from orthodontic patients between 11 to 17 years of age over an 18-month period. CBCT scans were examined in seven sagittal slices based on cervical vertebral maturation staging (CVMS). Collected CVMS values were compared with those from corresponding lateral cephalometric radiograph. CVMS measured from CBCT and lateral cephalometric radiographs were the same on average. However, they were not consistent with each other and scored interclass correlation coefficient of 0.155 in validity test. Interoperator reliability was weak (0.581). Adaptation of cervical vertebrae maturation staging in CBCT requires further clarifications or modifications to become consistent with lateral cephalometric examinations and to become a reliable method. Alternatively, a completely new method may be developed consisting of maturational indicators or landmarks unique to CBCT imaging. Copyright © 2012. Published by Elsevier Masson SAS.
The Accreditation Council for Graduate Medical Education requires that residency programs ensure resident competency in performing safe, effective handoffs. Understanding resident, attending, and nurse perceptions of the key elements of a safe and effective emergency department (ED) handoff is a crucial step to developing feasible, acceptable educational interventions to teach and assess this fundamental competency. The aim of our study was to identify the essential themes of ED-based handoffs and to explore the key cultural and interprofessional themes that may be barriers to developing and implementing successful ED-based educational handoff interventions. Using a grounded theory approach and constructivist/interpretivist research paradigm, we analyzed data from three primary and one confirmatory focus groups (FGs) at an urban, academic ED. FG protocols were developed using open-ended questions that sought to understand what participants felt were the crucial elements of ED handoffs. ED residents, attendings, a physician assistant, and nurses participated in the FGs. FGs were observed, hand-transcribed, audio-recorded and subsequently transcribed. We analyzed data using an iterative process of theme and subtheme identification. Saturation was reached during the third FG, and the fourth confirmatory group reinforced the identified themes. Two team members analyzed the transcripts separately and identified the same major themes. ED providers identified that crucial elements of ED handoff include the following: 1) Culture (provider buy-in, openness to change, shared expectations of sign-out goals); 2) Time (brevity, interruptions, waiting); 3) Environment (physical location, ED factors); 4) Process (standardization, information order, tools). Key participants in the ED handoff process perceive that the crucial elements of intershift handoffs involve the themes of culture, time, environment, and process. Attention to these themes may improve the feasibility and
Purpose Cone-Beam Computed Tomography (CBCT) is one of the primary imaging modalities in radiation therapy, dentistry, and orthopedic interventions. While CBCT provides crucial intraoperative information, it is bounded by a limited imaging volume, resulting in reduced effectiveness. This paper introduces an approach allowing real-time intraoperative stitching of overlapping and non-overlapping CBCT volumes to enable 3D measurements on large anatomical structures. Methods A CBCT-capable mobile C-arm is augmented with a Red-Green-Blue-Depth (RGBD) camera. An off-line co-calibration of the two imaging modalities results in co-registered video, infrared, and X-ray views of the surgical scene. Then, automatic stitching of multiple small, non-overlapping CBCT volumes is possible by recovering the relative motion of the C-arm with respect to the patient based on the camera observations. We propose three methods to recover the relative pose: RGB-based tracking of visual markers that are placed near the surgical site, RGBD-based simultaneous localization and mapping (SLAM) of the surgical scene which incorporates both color and depth information for pose estimation, and surface tracking of the patient using only depth data provided by the RGBD sensor. Results On an animal cadaver, we show stitching errors as low as 0.33 mm, 0.91 mm, and 1.72mm when the visual marker, RGBD SLAM, and surface data are used for tracking, respectively. Conclusions The proposed method overcomes one of the major limitations of CBCT C-arm systems by integrating vision-based tracking and expanding the imaging volume without any intraoperative use of calibration grids or external tracking systems. We believe this solution to be most appropriate for 3D intraoperative verification of several orthopedic procedures. PMID:29569728
Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph
... schools for digital learning. The ConnectED Workshop will discuss the growing bandwidth needs of K-12 schools as more schools use mobile devices to enrich the learning experience; as teachers increasingly... Distance Learning and Telemedicine Program; and the U.S. Department of Education. The meeting will be open...
Cone beam computed tomography, CBCT, is a kind of CT scanner producing conical diverging X-rays, in which a large area of a two-dimensional detector is irradiated in each rotation. Different investigations have been performed on dosimetry of dental CBCT. As there is no special protocol for dental CBCT, CT scan protocols are used for dosimetry. The purpose of this study is measurement of dose to head and neck organs in two CBCT systems, i.e. Planmeca 3D Mid (PM) and NewTom VGi (NT), using thermoluminescence dosimetry and Rando phantom. The thermoluminescent dosimetry (TLD)-100 chips were put at the position of different organs of the head and neck. Two TLD-100 chips were inserted at each position, the dose values were measured for several different field sizes, i.e. 8 à 8, 12 à 8 and 15 à 15 cm2 for NewTom, and 10 à 10 and 20 à 17 cm2 for Planmeca systems. According to the results, the average effective dose in PM is much more than the NT system in the same field size, because of the greater mAs values. For routine imaging protocols used for NT, the effective dose values are 70, 73 and 121 µSv for 8 à 8, 12 à 8 and 15 à 15 cm2 field sizes, respectively. In PM, the effective dose in 10 à 10 cm2 and 17 à 20 cm2 is 259 and 341 µSv, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Visualisation of soft tissues such as pancreatic tumours by mega-voltage cone beam CT (MV-CBCT) is frequently difficult and daily localisation is often based on more easily seen adjacent bony anatomy. Fiducial markers implanted into pancreatic tumours serve as surrogates for tumour position and may more accurately represent absolute tumour position. Differences in daily shifts based on alignment to implanted fiducial markers vs. alignment to adjacent bony anatomy were compared. Gold fiducial markers were placed into the pancreatic tumour under endoscopic ultrasound (EUS) guidance in 12 patients. Patients subsequently received image-guided intensity-modulated radiation therapy (IG-IMRT). MV-CBCT was performed prior to each fraction and isocentre shifts were performed based on alignment to the fiducial markers. We retrospectively reviewed archived MV-CBCT datasets and calculated shift differences in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) axes relative to shifts based on alignment to adjacent bony anatomy. Two hundred forty-three fractions were analysed. The mean absolute difference in isocentre shifts between the fiducial markers and those aligned to bony anatomy was 3.4âmm (range 0-13âmm), 6.3âmm (range 0-21âmm) and 2.6âmm (range 0-12âmm), in LR, SI and AP directions, respectively. The mean three-dimensional vector shift difference between markers vs. bony anatomy alignment was 8.6âmm. These data suggest that fiducial markers used in conjunction with MV-CBCT improve the accuracy of daily target delineation compared with localisation using adjacent bony anatomy and that gold fiducial markers using MV-CBCT alignment are a viable option for target localisation during IG-IMRT. © 2015 The Royal Australian and New Zealand College of Radiologists.
The objective of the study is to determine the prevalence of Clostridium difficile infection (CDI) presenting to emergency departments (EDs) in the United States. Secondary objectives included defining the burden of CDI. This is a retrospective, observational cohort study of 2006-2010 Nationwide Emergency Department Sample database of 980 US hospital EDs in 29 states. Prevalence, mortality rate, length of stay, hospital charges, and endemicity were measured. A total of 474513 patients with CDI-related ED visits were identified. From 2006 to 2010, the prevalence of CDI increased from 26.2 to 33.1 per 100,000 population (P<.001). The number of CDI-related ED cases increased 26.1% (P<.001) over the study period: 18.6% from 2006 to 2007 (P<.001), 4.3% from 2007 to 2008 (P=.46), 1.8% from 2008 to 2009 (P=.73), and 0.13% from 2009 to 2010 (P=.95). Emergency department visits occurred more frequently with individuals 85 years or older (relative risk [RR], 13.74; P<.001), females (RR, 1.77; P<.001) and in the northeast United States (RR, 1.42; P<.001). From 2009 to 2010, the mortality rate decreased 17.9% (P=.01). The prevalence of CDI presenting to EDs increased each year from 2006 to 2010; however, the rate of increase slowed from each year to the next. The mortality rate increased from 2006 to 2009 and decreased significantly from 2009 to 2010. C difficile infection visits presenting to EDs occurred more frequently with older individuals, females, and in the northeast. Copyright © 2014 Elsevier Inc. All rights reserved.
is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate VMAT using Electronic  Portal Imaging Device (EPID) and onboard Cone beam Computed Tomography (CBCT).  The specific aims of this project
Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan
Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7ââ±ââ2.7âmm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1âmm, 1.1âmm, and 2.8âmm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2ââ±ââ0.1âmm and 5.4ââ±ââ2.0âmm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5âmm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.
Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less
Introduction Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. Aim The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. Materials and Methods CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucciâs classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Results Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. Conclusion There was a high prevalence of two rooted mandibular third molars with three canals. PMID:28764294
Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (pâ<â.05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80âmm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87âmm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (pâ=â.169 and pâ=â.551, pâ=â.113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties. PMID:27699100
In this presentation we will discuss the many and varied cyber attacks that have recently occurred in the higher ed community. We will discuss the perpetrators, the victims, the impact and how these institutions have evolved to meet this threat. Mitigation techniques and defense strategies will be covered as will a discussion of effective securityâ¦
Heart position variability during voluntary moderate deep inspiration breath-hold radiotherapy for breast cancer determined by repeat CBCT scans.
Purpose: Deformable image registration (DIR) is used routinely in the clinic without a formalized quality assurance (QA) process. Using simulated deformations to digitally deform images in a known way and comparing to DIR algorithm predictions is a powerful technique for DIR QA. This technique must also simulate realistic image noise and artifacts, especially between modalities. This study developed an algorithm to create simulated daily kV cone-beam computed-tomography (CBCT) images from CT images for DIR QA between these modalities. Methods: A Catphan and physical head-and-neck phantom, with known deformations, were used. CT and kV-CBCT images of the Catphan were utilized tomore » characterize the changes in Hounsfield units, noise, and image cupping that occur between these imaging modalities. The algorithm then imprinted these changes onto a CT image of the deformed head-and-neck phantom, thereby creating a simulated-CBCT image. CT and kV-CBCT images of the undeformed and deformed head-and-neck phantom were also acquired. The Velocity and MIM DIR algorithms were applied between the undeformed CT image and each of the deformed CT, CBCT, and simulated-CBCT images to obtain predicted deformations. The error between the known and predicted deformations was used as a metric to evaluate the quality of the simulated-CBCT image. Ideally, the simulated-CBCT image registration would produce the same accuracy as the deformed CBCT image registration. Results: For Velocity, the mean error was 1.4 mm for the CT-CT registration, 1.7 mm for the CT-CBCT registration, and 1.4 mm for the CT-simulated-CBCT registration. These same numbers were 1.5, 4.5, and 5.9 mm, respectively, for MIM. Conclusion: All cases produced similar accuracy for Velocity. MIM produced similar values of accuracy for CT-CT registration, but was not as accurate for CT-CBCT registrations. The MIM simulated-CBCT registration followed this same trend, but overestimated MIM DIR errors relative to the CT-CBCT
Cone beam CT (CBCT) images contain more scatter than a conventional CT image and therefore provide inaccurate Hounsfield units (HUs). Consequently, CBCT images cannot be used directly for radiotherapy dose calculation. The aim of this study is to enable dose calculations to be performed with the use of CBCT images taken during radiotherapy and evaluate the necessity of replanning. A patient with prostate cancer with bilateral metallic prosthetic hip replacements was imaged using both CT and CBCT. The multilevel threshold (MLT) algorithm was used to categorize pixel values in the CBCT images into segments of homogeneous HU. The variation in HU with position in the CBCT images was taken into consideration. This segmentation method relies on the operator dividing the CBCT data into a set of volumes where the variation in the relationship between pixel values and HUs is small. An automated MLT algorithm was developed to reduce the operator time associated with the process. An intensity-modulated radiation therapy plan was generated from CT images of the patient. The plan was then copied to the segmented CBCT (sCBCT) data sets with identical settings, and the doses were recalculated and compared. Gamma evaluation showed that the percentage of points in the rectum with γâ<â1 (3%/3âmm) were 98.7% and 97.7% in the sCBCT using MLT and the automated MLT algorithms, respectively. Compared with the planning CT (pCT) plan, the MLT algorithm showed -0.46% dose difference with 8âh operator time while the automated MLT algorithm showed -1.3%, which are both considered to be clinically acceptable, when using collapsed cone algorithm. The segmentation of CBCT images using the method in this study can be used for dose calculation. For a patient with prostate cancer with bilateral hip prostheses and the associated issues with CT imaging, the MLT algorithms achieved a sufficient dose calculation accuracy that is clinically acceptable. The automated MLT algorithm reduced the
Internal inflammatory root resorption is a rare condition in permanent teeth, which requires the presence of necrotic and infected pulp tissue within the coronal portion of the root canal system as well as inflamed pulp tissue apical to the resorptive defect. The aetiology of internal root resorption is not completely understandable, trauma and chronic pulpitis are considered the main risk factors. We report a rare case of the multiple idiopathic resorption in the permanent maxillary and mandibular molars in a healthy 33-year-old female patient. In addition to clinical examination the patient was imaged using conventional radiography techniques and cone beam computed tomography (CBCT).The patient had recurrent throbbing pain in her # 46. The radiographic examination including "panoramic radiography and CBCT" revealed that radiographic evidence of internal resorption in #37 #36 #35 #34 #33 #47 #46 #45 #44 #43 #16 #15 #14 #13 and also including in unerupted #17, #26, #27, #28 teeth. The definitive diagnosis was made with the histopathological examination of the extracted tooth. Internal root resorption is a rare clinical process that should be examined using different radiographic modalities. CBCT seems to be useful in evaluation of the lesions with superior diagnostic performance.
Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucci's classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. There was a high prevalence of two rooted mandibular third molars with three canals.
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, âtime is brainâ in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a âone-stop-shopâ in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac
Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W
This study used con-beam computed tomography (CBCT) to investigate the prevalence and severity of alveolar bone loss in middle-aged (40-59 years) Chinese with chronic periodontitis. The study group comprised 145 dentate individuals aged 40 to 59 years residing in China who suffered from chronic periodontitis. CBCT and the application of NNT software were used to examine the level and location of alveolar bone loss. The study revealed that 40-59 year old patients with chronic periodontitis had severe bone loss. At 5,286 sites (34.7%), alveolar bone loss was mild; severe alveolar bone loss was found at 5,978 sites (39.2%). A comparison of bone loss in different jaws revealed that the area with the highest degree of bone loss was on the lingual side of the maxillary molar (56.3 ± 7.2%), and that the area with the lowest degree was primarily on the lingual side of the mandibular canine (27.5 ± 6.3%). There was a lower degree of alveolar bone loss in males than females. Differences were observed when comparing the incidence of bone loss between males and females (P < 0.05). Menopause in females and smoking in both genders may affect the level of bone loss. Male smokers experienced a greater degree of bone loss (41.67 ± 5.76%) than male non-smokers (32.95 ± 4.31%). A 42.23 ± 6.34% bone loss was found in menopausal females versus 31.35 ± 3.62% in non-menopausal females. The study revealed that different sites and teeth exhibited a diverse degree of bone loss. In middle-aged patients with chronic periodontitis, the highest degrees of bone loss in the incisors, premolars, and molars were on the lingual side, mesial side and lingual side, respectively. Menopause in females and smoking may affect the level of bone loss.
Automated framework for estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in stereotactic lung body radiotherapy
Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.
Alternative splicing of primary fibronectin (FN) mRNA results in the synthesis of different isoforms. ED-A+ and ED-B+ FN isoforms are absent from plasma FN and are representative of cellular FN. Their expression was studied in human and rat normal colon, in human colorectal carcinomas, and in transplanted tumors derived from a chemically-induced rat colon cancer. In normal colon, only the ED-A+ FN isoform was expressed as a thin deposit between crypt colonocytes and pericryptal myofibroblasts. Conversely, heavy ED-A+ FN deposits and lighter ED-B+ FN expression were found in the stroma of colorectal tumors in association with myofibroblasts surrounding tumor glands. Some colonic cancer cells also contained intracellular FN isoform granules and expressed FN mRNA. Tumor-associated myofibroblasts and some cancer cell lines were able to synthesize and deposit extracellular ED-A+ and ED-B+ FN in vitro. FN isoform deposition by tumor-associated myofibroblasts was not modulated by colon cancer cell-conditioned medium, but was strongly enhanced when myofibroblasts were cultured on colon cancer cell extracellular matrix or on laminin. These results show that the ED-A+ and ED-B+ FN isoforms were overexpressed in colorectal cancer. Cancer cells can deposit these FN isoforms directly and also stimulate their deposition by tumor-associated myofibroblasts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:8579120
The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index) for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT) scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca), were classified using the KPG index by three independent orthodontists. Measurements were repeated one month later. Based on these two sessions, several recommendations on KPG Index scoring were elaborated. After a joint calibration session, these recommendations were explained to nine orthodontists and the two measurement sessions were repeated. There was a moderate intrarater agreement in the precalibration measurement sessions. After the calibration session, both intra- and interrater agreement were almost perfect. Indexes assessed with Kodak Dental Imaging 3D module software showed a better reliability in z-axis values, whereas indexes assessed with Planmeca Romexis software showed a better reliability in x- and y-axis values. No differences were found between the CBCT scanners used. Taken together, these findings indicate that the application of the instructions elaborated during this study improved KPG index reliability, which was nevertheless variously influenced by the use of different software for images evaluation. PMID:24235889
SU-G-JeP3-04: Estimating 4D CBCT from Prior Information and Extremely Limited Angle Projections Using Structural PCA and Weighted Free-Form Deformation
A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.
Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy
Ed Lu of Expedition Seven is seen during a pre-launch interview. He explains why he became interested in space flight. He states that this is a different type of mission and gives his reaction to the Columbia Space Shuttle tragedy. The handover of Expedition six is explained by Ed Lu. The challenges of this mission are also described by Lu. These challenges include working with a crew member reduction from three to two, and the conservation of clothing and consumables. Ed Lu talks about what it is like to work with commander Yuri Malenchenko in space. Finally, Ed Lu states that he will continue scientific experiments in space on calcium loss in bones.
Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose the use of a moving blocker (MB) during the 4D CBCT acquisition (â4D MBâ) and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the x-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics.
Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Diceâs Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less
Cunningham, Rebecca M; Chermack, Stephen T; Ehrlich, Peter F; Carter, Patrick M; Booth, Brenda M; Blow, Frederic C; Barry, Kristen L; Walton, Maureen A
Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithmmore » which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearsonâs correlation, r, proved to be
Influence of patient position and other inherent factors on image quality in two different cone beam computed tomography (CBCT) devices.
The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires 'at most one function evaluation' in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a 'smoothed TV' or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam⢠system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for
This study demonstrates how a participatory action research approach was used to address the challenge of the early and effective detection of the deteriorating patient in the ED setting. The approach enabled a systematic approach to patient monitoring and escalation of care to be developed to address the wide-ranging spectrum of undifferentiated presentations and the phases of ED care from triage to patient admission. This paper presents a longitudinal patient monitoring system, which aims to provide monitoring and escalation of care, where necessary, of adult patients from triage to admission to hospital in a manner that is feasible in the unique ED environment. An action research approach was taken to designing a longitudinal patient monitoring system appropriate for the ED. While the first draft protocol for post-triage monitoring and escalation was designed by a core research group, six clinical sites were included in iterative cycles of planning, action, reviewing and further planning. Reasons for refining the system at each site were collated and the protocol was adjusted accordingly before commencing the process at the next site. The ED Adult Clinical Escalation longitudinal patient monitoring system (ED-ACE) evolved through iterative cycles of design and testing to include: (1) a monitoring chart for adult patients; (2) a standardised approach to the monitoring and reassessment of patients after triage until they are assessed by a clinician; (3) the ISBAR (I=Identify, S=Situation, B=Background, A=Assessment, R=Recommendation) tool for interprofessional communication relating to clinical escalation; (4) a template for prescribing a patient-specific monitoring plan to be used by treating clinicians to guide patient monitoring from the time the patient is assessed until when they leave the ED and (5) a protocol for clinical escalation prompted by single physiological triggers and clinical concern. This tool offers a link in the 'Chain of Prevention' between
Cone-beam computed tomography (CBCT) is an imaging system which has advantages over computed tomography (CT). Recently, CBCT has become widely used for oral and maxillofacial imaging. In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present (in vitro) study was to investigate the relationship between gray scale in CBCT and HU in CT scan. In this descriptive study, the anthropomorphic head phantom was scanned with CBCT and CT scanner. Gray scales and HUs were detected on images at the crown of the teeth, trabecular and cortical bone of mandible. The images were analyzed to obtain the gray scale value and HU value. The obtained value then used to investigate the relationship between CBCT gray scales and HUs. For the statistical analysis, t-test, Pearson's correlation and regression analysis were used. The differences between the gray scale of CBCT and HU of CT were statistically not significant, whereas the Pearson's correlation coefficients demonstrated a statistically significant correlation between gray scale of CBCT and HU of CT values. Considering the fact that gray scale in CBCT is important in pre assessment evaluation of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.
Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This studyâs purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, themore » planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive
Impact of a low intensity and broadly inclusive ED care coordination intervention on linkage to primary care and ED utilization.
Most periapical lesions are associated with microorganisms from infected root canal systems. Maxillary sinus can pose a diagnostic dilemma radiographically because of its anatomical variation which can mimic a periapical pathosis. The aim of this study was to describe two cases of aberrant anatomical variation of the maxillary sinus that presented radiographic similarities to a periapical cyst in order to call the attention of clinicians to the fact that several different diseases are able to mimic endodontic periapical lesions. An accurate assessment of this morphology was made with the help of cone-beam computed tomography (CBCT). PMID:23710374
Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHDmore » system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was â¤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was â¤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.« less
Purpose: SymmetryTM 4D IGRT system of Elekta has been installed at our institution, which offers the 4D CBCT registration option. This study is to evaluate the accuracy of 4D CBCT system by using the CIRS 4D motion phantom and to perform a feasibility study on the implementation of 4D-CBCT as image guidance for SBRT treatment. Methods: The 3D and 4D CT image data sets are acquired using the CIRS motion phantom on a Philips large bore CT simulator. The motion was set as 0.5 cm superior and inferior directions with 6 seconds recycle time. The 4D CT data were sortedmore » as 10 phases. One identifiable part of the 4D CT QA insert from CIRS phantom was used as the target. The ITV MIP was drawn based on maximum intensity projection (MIP) and transferred as a planning structure into 4D CBCT system. Then the 3D CBCT and 4D CBCT images were taken and registered with the free breath (3D), MIP (4D) and average intensity projection (AIP)(4D) reference data sets. The couch shifts (X, Y, Z) are recorded and compared. Results: Table 1 listed the twelve couch shifts based on the registration of MIP, AIP and free breath CT data sets with 3D CBCT and 4D CBCT for both whole body and local registration. X, Y and Z represent couch shifts in the direction of the right-left, superior-inferior and anterior-posterior. The biggest differences of 0.73 cm and 0.57 cm are noted in the free breath CT data with 4D CBCT and 3D CBCT data registration. Fig. 1 and Fig. 2 are the shift analysis in diagram. Fig. 3 shows the registration. Conclusion: Significant differences exist in the shifts corresponding with the direction of target motion. Further investigations are ongoing.« less
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup â1} and 7/(2Ï) rad{sup â1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and Ï/7 rad (â¼25°) can be used to properly
More than 10 years ago, cone-beam-computed tomography (CBCT) was introduced in ENT radiology. Until now, the focus of research was to evaluate clinical limits of this technique. The aim of this work is the evaluation of specific dosages and the identification of potential optimization in the performance of CBCT of the paranasal sinuses. Based on different tube parameters (tube current, tube voltage, and rotation angles), images of the nose and the paranasal sinuses were taken on a phantom head with the Accu-I-tomo F17 (Morita, Kyoto, Japan). The dosages applied to the lens and parotid gland were measured with OSL dosimetry. The imaging quality was evaluated by independent observers. All datasets were reviewed according to a checklist of surgically important anatomic structures. Even for lowest radiation exposure (4 mA, 76 kV, 180°, computed tomography dosage index (CTDI) = 1.8 mGy), the imaging quality was sufficient. Of course a significant reduction of the imaging quality could be seen, so a reliable mean was set for 4 mA, 84 kV, and 180° rotation angle (CTDI = 2.4 mGy). In this combination, a reduction of 92 % in lens-dose and of 77 % of dosage at the parotid gland was observed in comparison to the maximal possible adjustments (8 mA, 90 kV, 360°, CTDI = 10.9 mGy). There is potential for optimization in CBCT. Changing the rotation angle (180° instead of 360°) leads to a dose reduction of 50 %. Furthermore from clinical point of view in case of chronic rhinosinusitis a relevant reduction of dosage is possible. Therefore, it is necessary to intensify the interdisciplinary discussion about the disease specifics required quality of imaging.
Fuller, Brian M; Mohr, Nicholas M; Miller, Christopher N; Deitchman, Andrew R; Levine, Brian J; Castagno, Nicole; Hassebroek, Elizabeth C; Dhedhi, Adam; Scott-Wittenborn, Nicholas; Grace, Edward; Lehew, Courtney; Kollef, Marin H
MO-FG-CAMPUS-JeP1-05: Water Equivalent Path Length Calculations Using Scatter-Corrected Head and Neck CBCT Images to Evaluate Patients for Adaptive Proton Therapy
Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts.
Tan, Hui-Meng; Low, Wah Yun; Ng, Chirk Jenn; Chen, Kuang-Kuo; Sugita, Minoru; Ishii, Nobuhisa; Marumo, Ken; Lee, Sung Won; Fisher, William; Sand, Michael
To investigate if the regular use of kV-CBCT notably increases the dose delivered to tumor and surrounding healthy tissues. Images were obtained using a Varian equipment (OBI version 1.3, 645 to 650 projections in 370 degrees to acquire image), and patients were irradiated at source-tumor distance: 100cm. In vivo measurements were performed using radio-thermoluminescent dosimeters Harshaw-TLD700H (TLD) at skin (anterior-posterior and lateral axis crossing the rotation axis), with a fourth TLD group under the table thanks to a retrolaser. TLD's were calibrated at the kV-CBCT effective energy (64 keV), and the method validated using an anthropomorphic phantom, in which Gafchromic EBT films were also inserted. The phantom study showed that the dose distribution depends on the phantom position relative to the axis and that the doses measured at the phantom surface using TLD and films (good agreement) were maximum at the entrance of the anterior-posterior axis. Their arithmetic mean was equal, or a slightly greater than doses measured at mid-thickness of the phantom and at the level of the rectum (OAR). In vivo measurements performed on the five first patients (125 kV-CBCT) yield a mean skin dose per kV-CBCT varying from 5.8+/-0.1 to 7.3+/-0.2 cGy on the anterior-posterior axis. Lateral skin doses vary from 3.4+/-0.2 to 4.5+/-0.2 cGy. Doses delivered by repeated kV-CBCT are not negligible. They should be taken into account, but questions about the RBE to be applied to kilovoltage X-rays are raised.
The use of CBCT technology in the dental office is increasing rapidly. These scans provide information on anatomy not previously evaluated with traditional 2D films. One structure often mentioned in a CBCT radiology report is the pineal gland. The pineal gland will show evidence of calcification, but this calcification is often dismissed as a normal aging process. This review of the function and influence of the pineal gland may influence the doctor to complete further evaluation of the patient.
To compare the accuracy of cone beam computed tomography (CBCT) and micro-computed tomography (μCT) when measuring the volume of bone cavities. Ten irregular-shaped cavities of varying dimensions were created in bovine bone specimens using a rotary diamond bur. The samples were then scanned using the Accuitomo 3D CBCT scanner. The scanned information was converted to the Digital Imaging and Communication in Medicine (DICOM) format ready for analysis. Once formatted, 10 trained and calibrated examiners segmented the scans and measured the volumes of the lesions. Intra/interexaminer agreement was assessed by each examiner re-segmenting each scan after a 2-week interval. Micro-CT scans were analysed by a single examiner. To achieve a physical reading of the artificially created cavities, replicas were created using dimensionally stable silicone impression material. After measuring the mass of each impression sample, the volume was calculated by dividing the mass of each sample by the density of the set impression material. Further corroboration of these measurements was obtained by employing Archimedes' principle to measure the volume of each impression sample. Intraclass correlation was used to assess agreement. Both CBCT (mean volume: 175.9 mm3) and μCT (mean volume: 163.1 mm3) showed a high degree of agreement (intraclass correlation coefficient >0.9) when compared to both weighed and 'Archimedes' principle' measurements (mean volume: 177.7 and 182.6 mm3, respectively). Cone beam computed tomography is an accurate means of measuring volume of artificially created bone cavities in an ex vivo model. This may provide a valuable tool for monitoring the healing rate of apical periodontitis; further investigations are warranted. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.
Yoshidome, Satoshi; Arimura, Hidetaka; Terashima, Koutarou; Hirakawa, Masakazu; Hirose, Taka-aki; Fukunaga, Junichi; Nakamura, Yasuhiko
Objectives: The purpose of the study is to evaluate the effectiveness of thyroid shielding in dental CBCT examinations using a paediatric anthropomorphic phantom. Methods: An ATOM® 706-C anthropomorphic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA) representing a 10-year-old child was loaded with six thermoluminescent dosemeters positioned at the level of the thyroid gland. Absorbed doses to the thyroid were measured for five commercially available thyroid shields using a large field of view (FOV). Results: A statistically significant thyroid gland dose reduction was found using thyroid shielding for paediatric CBCT examinations for a large FOV. In addition, a statistically significant difference in thyroid gland doses was found depending on the position of the thyroid gland. There was little difference in the effectiveness of thyroid shielding when using a lead vs a lead-equivalent thyroid shield. Similar dose reduction was found using 0.25- and 0.50-mm lead-equivalent thyroid shields. Conclusions: Thyroid shields are to be recommended when undertaking large FOV CBCT examinations on young patients. PMID:25411710
The aim of this study was to assess whether cone beam computed tomography (CBCT) may be used for clinically reliable alveolar bone quality assessment in comparison to its clinical alternatives, multislice computed tomography and the gold standard (micro-CT). Six dentate mandibular bone samples were scanned with seven CBCT devices (ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170, Carestream 9300, Scanora 3D, I-CAT Next generation), one micro-CT scanner (SkyScan 1174) and one MSCT machine (Somatom Definition Flash) using two protocols (standard and high-resolution). MSCT and CBCT images were automatically spatially aligned on the micro-CT scan of the corresponding sample. A volume of interest was manually delineated on the micro-CT image and overlaid on the other scanning devices. Alveolar bone structures were automatically extracted using the adaptive thresholding algorithm. Based on the resulting binary images, an automatic 3D morphometric quantification was performed in a CT-Analyser (Bruker, Kontich, Belgium). The reliability and measurement errors were calculated for each modality compared to the gold standard micro-CT. Both MSCT and CBCT were associated with a clinically and statistically (Pâ <0.05) significant measurement error. Bone quantity-related morphometric indices (bone volume fraction 8.41%â min to 17.90%â max, bone surface density -0.47â mm-1â min to 0.16â mm-1â max and trabecular thickness 0.15â mm min to 0.31â mm max) were significantly (Pâ <0.05) overestimated, resulting in significantly (Pâ <0.05) closer trabecular pores (total porosity percentage -8.41%â min to -17.90%â max and fractal dimension 0.08â min to 0.17â max) in all scanners compared to micro-CT. However, the structural pattern of the alveolar bone remained similar compared to that of the micro-CT for the ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170 and Carestream 9300. On the other hand, the Scanora 3D, i-CAT Next Generation, standard and high
Loss of Control Eating Disorder (LOC-ED) has been proposed as a diagnostic category for children 6â12y with binge-type eating. However, characteristics of youth with LOC-ED have not been examined. We tested the hypothesis that the proposed criteria for LOC-ED would identify children with greater adiposity, more disordered eating attitudes, and greater mood disturbance than those without LOC-ED. Participants were 251 youth (10.29y ± 1.54, 53.8% female, 57.8 % White, 35.5% Black, 2.0% Asian, 4.8% Hispanic, 53.0% overweight). Youth were interviewed regarding eating attitudes and behaviors, completed questionnaires to assess general psychopathology, and underwent measurements of body fat mass. Using previously proposed criteria for LOC-ED, children were classified as LOC-ED (n = 19), LOC in the absence of the full disorder (subLOC, n = 33), and youth not reporting LOC (noLOC, n = 199). LOC-ED youth had higher BMIz (p = 0.001) and adiposity (p = 0.003) and reported greater disordered eating concerns (p < 0.001) compared to noLOC youth. Compared to subLOC youth, LOC-ED youth had non-significantly higher BMIz (p = 0.11), and significantly higher adiposity (p = 0.04) and disordered eating attitudes (p = 0.02). SubLOC youth had greater disordered eating concerns (p < 0.001) and BMIz (p = 0.03) but did not differ in adiposity (p = 0.33) compared to noLOC youth. These preliminary data suggest that LOC-ED youth are elevated on disordered eating cognitions and anthropometric measures compared to youth without LOC-ED. Longitudinal studies are needed to determine if those with LOC-ED are at particularly increased risk for progression of disordered eating and excess weight gain. PMID:25913008
Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imagerâs deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10âmm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, Ï. Projection images of the phantom incorporating the CBCT scannerâs geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed
Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJâs soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486
The purpose of this study was to find a correlation between sella turcica bridging and the presence of a palatal impacted canine, using lateral cephalograms and CBCT. We selected the lateral cephalograms and CBCTs of 60 patients meeting specific criteria. The radiographs were analysed to study the relationship between sella turca bridging and several factors. The presence or absence of a partial or total bridging was deducted by measuring the dimensions of the sella turcica and by using an accurate scoring system. Our study did not show any statistically significant association between sella turcica bridging as diagnosed on the lateral cephalogram and the CBCT images and the following factors: age, gender, facial type, skeletal class and the presence of an impacted canine. We found a significant difference for the classification of the sella turcica between these two radiographic methods. Copyright © 2018. Published by Elsevier Masson SAS.
Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the
Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI
Yeatts, Karin B; Lippmann, Steven J; Waller, Anna E; Hassmiller Lich, Kristen; Travers, Debbie; Weinberger, Morris; Donohue, James F
Zhao, Haijiao; Li, Chen; Lin, Li; Pan, Yaping; Wang, Hongyan; Zhao, Jian; Tan, Lisi; Pan, Chunling; Song, Jia; Zhang, Dongmei
The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.
The pressures of patient demand on emergency departments (EDs) continue to be reported worldwide, with an associated negative impact on ED crowding and waiting times. It has also been reported that a proportion of attendances to EDs in different international systems could be managed in settings such as primary care. This study used routine ED data to define, measure and profile non-urgent ED attendances that were suitable for management in alternative, non-emergency settings. We undertook a retrospective analysis of three years of Hospital Episode and Statistics Accident Emergency (HES A&E) data for one large region in England, United Kingdom (April 1st 2011 to March 31st 2014). Data was collected on all adult (>16 years) ED attendances from each of the 19 EDs in the region. A validated process based definition of non-urgent attendance was refined for this study and applied to the data. Using summary statistics non-urgent attenders were examined by variables hypothesised to influence them as follows: age at arrival, time of day and day of week and mode of arrival. Odds ratios were calculated to compare non-urgent attenders between groups. There were 3,667,601 first time attendances to EDs, of which 554,564 were defined as non-urgent (15.1%). Non-urgent attendances were significantly more likely to present out of hours than in hours (OR = 1.19, 95% CI: 1.18 to 1.20, P<0.001). The odds of a non-urgent attendance were significantly higher for younger patients (aged 16-44) compared to those aged 45-64 (odds ratio: 1.42, 95% CI: 1.41 to 1.43, P<0.001) and the over 65's (odds ratio: 3.81, 95% CI: 3.78 to 3.85, P<0.001). Younger patients were significantly more likely to attend non-urgently out of hours compared to the 45-64's (OR = 1.24, 95% CI: 1.22 to 1.25, P<0.001) and the 65+'s (OR = 1.38, 95% CI: 1.35 to 1.40, P<0.001). 110,605/554,564 (19.9%) of the non-urgent attendances arrived by ambulance, increasing significantly out of hours versus in hours (OR = 2.12, 95
Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K
Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized dailymore » with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV
A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500âmm and beam qualities at tube potentials of 80-140âkV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans fâ(0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40âmm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of fâ(0) at each position in a long phantom, normalized with respect to dose indices fâ100(150)x measured with a 100âmm pencil ionization chamber within standard 150âmm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. fâ100(150)x averages the dose resulting from
New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy
Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB). For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (ΠHP-FE ) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (ΠHP-CW ) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall. For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the ΠHP-FE and the ΠHP-CW was 0.8±4.2mm (range -9.4-+10.6mm) and 1.0±4.4mm (range -8.3-+10.4mm) respectively. The average gain in heart to chest wall distance was 11.8±4.6mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a âself-calibrationâ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHMâe.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPEâe.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional
Faster product replacement cycles. Entry level models tend to be replaced with a much shorter product cycle than higher level models. The changes between one model and the next are usually fairly incremental but it allows manufacturers to have a new "latest new model" more often. The higher end the model, the longer it takes the two biggest players, Canon and Nikon, to replace those models. For most of the last decade the Rebels tended to be replaced every 12-18 months. Canon started out replacing their mid-grade enthusiast and prosumer DSLR cameras at about the same pace, but slowed to more leisurely product cycles in the mid-range models at around 2009. The top end pro models typically have even longer product cycles.
CBCT is a new emerging imaging technique which uses a cone-shaped radiation beam that is centered on a 2D detector. It is now routinely evaluated for oral and para-oral disorders. It has been widely accepted in practice in radiology in academic and hospital settings and included in the curricula of some countries. The present study aimed to evaluate the awareness of and knowledge on CBCT among postgraduates. After obtaining permission and ethical clearance from concerned authorities, an anonymous survey on CBCT was conducted in a dental college by using a close-ended validated questionnaire to get to know the knowledge on CBCT among postgraduates in a dental college in India. A total of 100 volunteers participated but only 88 postgraduates responded to the questionnaire. Among the respondents, 54.5% were not using CBCT for diagnostic purposes at their work place. A total of 68.2% of respondents were partially aware of common terminologies used in CBCT. Most of the respondents were unsure about radiation exposure of CBCT when compared to other types of imaging. Almost nobody had any idea on relative importance of image characteristics. Only half of the respondents were willing to attend a hands-on course on CBCT interpretations versus pathology. In the present study it was apparent that most of the respondents were lacking adequate knowledge on CBCT. Hence, there is an urgent need for more training programs on CBCT which would result in better diagnosis and treatment planning.
Coneâbeam computed tomography CBCT systems are used in radiation therapy for patient alignment and positioning. The CBCT imaging procedure for patient setup adds substantial radiation dose to patient's normal tissue. This study presents a complete procedure for the CBCT dosimetry using the InLight opticallyâstimulatedâluminescence (OSL) nanoDots. We report five dose parameters: the mean slice dose (DMSD); the cone beam dose index (CBDIW); the mean volume dose (DMVD); pointâdose profile, D(FOV); and the offâfield Dose. In addition, CBCT skin doses for seven pelvic tumor patients are reported. CBCTâdose measurement was performed on a customâmade cylindrical acrylic body phantom (50 cm length, 32 cm diameter). We machined 25 circular disks (2 cm thick) with grooves and holes to hold OSLânanoDots. OSLs that showed similar sensitivities were selected and calibrated against a Farmerâtype ionizationâchamber (0.6 CT) before being inserted into the grooves and holes. For the phantom scan, a standard CBCTâimaging protocol (pelvic sites: 125 kVp, 80 mA and 25 ms) was used. Five dose parameters were quantified: DMSD, CBDIW, DMVD, D(FOV), and the offâfield dose. The DMSD for the central slice was 31.1±0.85 mGy, and CBDIW was 34.5±0.6 mGy at 16 cm FOV. The DMVD was 25.6±1.1 mGy. The offâfield dose was 10.5 mGy. For patients, the anterior and lateral skin doses attributable to CBCT imaging were 39.04±4.4 and 27.1±1.3 mGy, respectively. OSL nanoDots were convenient to use in measuring CBCT dose. The method of selecting the nanoDots greatly reduced uncertainty in the OSL measurements. Our detailed calibration procedure and CBCT dose measurements and calculations could prove useful in developing OSL routines for CBCT quality assessment, which in turn gives them the property of high spatial resolution, meaning that they have the potential for measurement of dose in regions of severe doseâgradients. PACS number(s): 87.57.âs, 87.57.Q, 87.57.uq PMID
TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction
Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation
SU-E-J-103: Setup Errors Analysis by Cone-Beam CT (CBCT)-Based Imaged-Guided Intensity Modulated Radiotherapy for Esophageal Cancer
With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was approximately 4.0 cGy, which was approximately 40% higher than the Rt Lat dose of approximately 2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370 degrees scan rotation (10 degrees scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of approximately 10-11 cGy while the right hip received approximately 6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than approximately 12% to the table-drop setup.
Trend analysis of Terra/ASTER/VNIR radiometric calibration coefficient through onboard and vicarious calibrations as well as cross calibration with MODIS
Samandara, Aikaterini; Papageorgiou, Spyridon N; Ioannidou-Marathiotou, Ioulia; Kavvadia-Tsatala, Smaragda; Papadopoulos, Moschos A
Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner
To investigate the prevalence of periradicular periodontitis (PRP) using cone-beam computed tomography (CBCT) scans in a retrospective cross-sectional epidemiological study in a Scottish subpopulation. Of the 319 CBCT scans performed at Dundee Dental Hospital between November 2009 and July 2012, 245 dentate scans of patients over 18 years of age were included and 3595 teeth examined. Odds ratios were calculated, and the association between root filling and posts with PRP was determined. Radiological signs of PRP were detected in 209 teeth (5.8%) in 96 patients (male = 53, female = 43) of which 145 (69.4%) were measurable and 64 (30.6%) appeared as periapical widening. Most lesions were seen in the 46-55-year age group and in maxillary anterior teeth (35.4%); 47.4% (n = 81) of the total root filled teeth (n = 171) had PRP. Of the root filled teeth with lesions, approximately half (50.6%) had an inadequate root filling. Teeth with crowns, but not root filled, accounted for 17.7% of PRP. Periapical changes were detected on a high proportion of teeth with post-retained crowns (70.7%). The presence of a root filling was significantly associated with PRP (z = 17.689 P < 0.0001; odds ratio 16.36 < 23.17 < 32.83, 95% CI) and the presence of a post (z = 10.901 P < 0.0001; odds ratio 21.36 < 41.8021 < 81.78, 95% CI). The prevalence of PRP in a Scottish subpopulation was 5.8%. The presence of a root filling or a post-retained crown was significantly associated with the presence of PRP as determined by CBCT scans. The prevalence of periradicular disease in root filled teeth remains high in the Scottish population. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Inkista's answer covers the trickle-down practice very well, so we won't duplicate that here. But there is an additional consideration to consider as to why Canon and others do it.
MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Ã resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Ã resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172
Purpose: To compare PCXMC and EGSnrc calculated organ and effective radiation doses from cone-beam computed tomography (CBCT) and interventional fluoroscopically-guided procedures using automatic exposure-event grouping. Methods: For CBCT, we used PCXMC20Rotation.exe to automatically calculate the doses and compared the results to those calculated using EGSnrc with the Zubal patient phantom. For interventional procedures, we use the dose tracking system (DTS) which we previously developed to produce a log file of all geometry and exposure parameters for every x-ray pulse during a procedure, and the data in the log file is input into PCXMC and EGSnrc for dose calculation. A MATLABmore » program reads data from the log files and groups similar exposures to reduce calculation time. The definition files are then automatically generated in the format used by PCXMC and EGSnrc. Processing is done at the end of the procedure after all exposures are completed. Results: For the Toshiba Infinix CBCT LCI-Middle-Abdominal protocol, most organ doses calculated with PCXMC20Rotation closely matched those calculated with EGSnrc. The effective doses were 33.77 mSv with PCXMC20Rotation and 32.46 mSv with EGSnrc. For a simulated interventional cardiac procedure, similar close agreement in organ dose was obtained between the two codes; the effective doses were 12.02 mSv with PCXMC and 11.35 mSv with EGSnrc. The calculations can be completed on a PC without manual intervention in less than 15 minutes with PCXMC and in about 10 hours with EGSnrc, depending on the level of data grouping and accuracy desired. Conclusion: Effective dose and most organ doses in CBCT and interventional radiology calculated by PCXMC closely match those calculated by EGSnrc. Data grouping, which can be done automatically, makes the calculation time with PCXMC on a standard PC acceptable. This capability expands the dose information that can be provided by the DTS. Partial support from NIH Grant R01-EB002873
Purpose: To study effect of scan length on magnitude of imaging dose deposition in Varian kV CBCT for head & neck and pelvis CBCT. Methods: To study effect of scan length we measured imaging dose at depth of 8 cm for head and neck Cone Beam Computed Tomography (CBCT) acquisition ( X ray beam energy is used 100kV and 200 degree of gantry rotation) and at 16 cm depth for pelvis CBCT acquisition ( X ray beam energy used is 125 kV and 360 degree of gantry rotation) in specially designed phantom. We used farmer chamber which was calibrated inmore » kV X ray range for measurements .Dose was measured with default field size, and reducing field size along y direction to 10 cm and 5 cm. Results: As the energy of the beam decreases the scattered radiation increases and this contributes significantly to the dose deposited in the patient. By reducing the scan length to 10 Cm from default 20.6 cm we found a dose reduction of 14% for head and neck CBCT protocol and a reduction of 26% for pelvis CBCT protocol. Similarly for a scan length of 5cm compared to default the dose reduction in head and neck CBCT protocol is 36% while in the pelvis CBCT protocol the dose reduction is 50%. Conclusion: By limiting the scan length we can control the scatter radiation generated and hence the dose to the patient. However the variation in dose reduction for same length used in two protocols is because of the scan geometry. The pelvis CBCT protocol uses a full rotation and head and neck CBCT protocol uses partial rotation.« less
The present study was aimed to determine the topographic relationship between root apex of the mesially and horizontally impacted mandibular third molar and lingual plate of mandible. The original cone beam computed tomography (CBCT) data of 364 teeth from 223 patients were retrospectively collected and analyzed. The topographic relationship between root apex and lingual plate on cross-sectional CBCT images was classified as non-contact (99), contact (145) and perforation (120). The cross-sectional morphology of lingual plate at the level of root apex was defined as parallel (28), undercut (38), slanted (29) and round (4). The distribution of topographic relationship between root apex and lingual plate significantly associated with gender, impaction depth, root number and lingual plate morphology. Moreover, the average bone thickness of lingual cortex and distance between root apex and the outer surface of lingual plate were 1.02 and 1.39âmm, respectively. Furthermore, multivariate regression analyses identified impaction depth and lingual plate morphology as the risk factors for the contact and perforation subtypes between root apex and lingual plate. Collectively, our findings reveal the topographic proximity of root apex of impacted mandibular third molar to the lingual plate, which might be associated with intraoperative and postoperative complications during tooth extraction. PMID:27991572
Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigatedmore » deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on
An interprojection sensor fusion approach to estimate blocked projection signal in synchronized moving grid-based CBCT system.
Schumacher, Jessica R.; Lutz, Barbara J.; Hall, Allyson G.; Pines, Jesse M.; Jones, Andrea L.; Hendry, Phyllis; Kalynych, Colleen; Carden, Donna L.
We sought to evaluate the performance of an abbreviated version of the Denver HIV Risk Score in 2 urban emergency departments (ED) with known high undiagnosed HIV prevalence. We performed a secondary analysis of data collected prospectively between November 2005 and December 2009 as part of an ED-based nontargeted rapid HIV testing program from 2 sites. Demographics; HIV testing history; injection drug use; and select high-risk sexual behaviors, including men who have sex with men, were collected by standardized interview. Information regarding receptive anal intercourse and vaginal intercourse was either not collected or collected inconsistently and was thus omitted from the model to create its abbreviated version. The study cohort included 15184 patients with 114 (0.75%) newly diagnosed with HIV infection. HIV prevalence was 0.41% (95% confidence interval [CI], 0.21%-0.71%) for those with a score less than 20, 0.29% (95% CI, 0.14%-0.52%) for those with a score of 20 to 29, 0.65% (95% CI, 0.48%-0.87%) for those with a score of 30 to 39, 2.38% (95% CI, 1.68%-3.28%) for those with a score of 40 to 49, and 4.57% (95% CI, 2.09%-8.67%) for those with a score of 50 or higher. External validation resulted in good discrimination (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.71-0.79). The calibration regression slope was 0.92 and its R(2) was 0.78. An abbreviated version of the Denver HIV Risk Score had comparable performance to that reported previously, offering a promising alternative strategy for HIV screening in the ED where limited sexual risk behavior information may be obtainable. Copyright © 2014 Elsevier Inc. All rights reserved.
Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde
A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.
States and teacher preparation programs across the country are increasingly using a teacher candidate assessment called edTPA. The purpose? To make sure that teacher candidates are ready and able to teach before they begin their careers. The teacher performance assessment requires candidates to compile a portfolio that consists of lesson plans,â¦
Scatter in cone-beam computed tomography (CBCT) is a significant problem that degrades image contrast, uniformity and CT number accuracy. One means of estimating and correcting for detected scatter is through an iterative deconvolution process known as scatter kernel superposition (SKS). While the SKS approach is efficient, clinically significant errors on the order 2-4% (20-40 HU) still remain. We have previously shown that the kernel method can be improved by perturbing the kernel parameters based on reference data provided by limited Monte Carlo simulations of a first-pass reconstruction. In this work, we replace the Monte Carlo modeling with a deterministic Boltzmann solver (AcurosCTS) to generate the reference scatter data in a dramatically reduced time. In addition, the algorithm is improved so that instead of adjusting kernel parameters, we directly perturb the SKS scatter estimates. Studies were conducted on simulated data and on a large pelvis phantom scanned on a tabletop system. The new method reduced average reconstruction errors (relative to a reference scan) from 2.5% to 1.8%, and significantly improved visualization of low contrast objects. In total, 24 projections were simulated with an AcurosCTS execution time of 22 sec/projection using an 8-core computer. We have ported AcurosCTS to the GPU, and current run-times are approximately 4 sec/projection using two GPU's running in parallel.
Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ÎV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ÎV ranges of [0.81â0.95], [0.76â0.99], [0.83â0.94], [0.02â0.21]. For prostate, the ranges are [0.77â0.93], [0.84â0.97], [0.68â0.92], [0.1â0.46]. For rectum, the ranges are [0.72â0.93], [0.57â0.99], [0.73â0.98], [0.03â0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast
Simple transfer calibration method for a Cimel Sun-Moon photometer: calculating lunar calibration coefficients from Sun calibration constants.
Objectives: To analyse the ANB and Wits values and to study correlations between those two measurements and other measurements in diagnosing the anteroposterior maxilo-mandibular relationship with CBCT. Study Design: Ninety patients who had previously a CBCT (i-CAT®) as a diagnostic register were selected. A 3D cephalometry was designed using one software package, InVivo5®. This cephalometry included 3 planes of reference, 3 angle measurements and 1 linear measurement. The means and standard deviations of the mean of each measurement were assessed. After that, a Pearson´s correlation coefficient has been performed to analyse the significance of each relationship. Results: When classifying the sample according to the anteroposterior relationship, the values obtained of ANB (Class I: 53%; Class II: 37%; Class III: 10%) and Wits (Class I: 35%; Class II: 56%; Class III: 9%) did not coincide, except for the Class III group. However, of the patients classified differently (Class I and Class II patients) by ANB and Wits, a high percentage of individuals (n=22; 49%), had a mesofacial pattern with a mandibular plane angle within normal values. A correlation has been found between ANB and Wits (r=0,262), occlusal plane angle and ANB (r=0,426), and mandibular plane angle and Wits (r=0,242). No correlation was found between either Wits or ANB in relation with the age of the individuals. Conclusions: ANB and Wits must be included in 3D cephalometric analyses as both are necessary to undertake a more accurate diagnosis of the maxillo-mandibular relationship of the patients. Key words:Cone beam computed tomography, ANB, Wits, cephalometrics. PMID:23722136
CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients
The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Purpose: A preobject grid can reduce and correct scatter in cone beam computed tomography (CBCT). However, half of the signal in each projection is blocked by the grid. A synchronized moving grid (SMOG) has been proposed to acquire two complimentary projections at each gantry position and merge them into one complete projection. That approach, however, suffers from increased scanning time and the technical difficulty of accurately merging the two projections per gantry angle. Herein, the authors present a new SMOG approach which acquires a single projection per gantry angle, with complimentary grid patterns for any two adjacent projections, and usemore » an interprojection sensor fusion (IPSF) technique to estimate the blocked signal in each projection. The method may have the additional benefit of reduced imaging dose due to the grid blocking half of the incident radiation. Methods: The IPSF considers multiple paired observations from two adjacent gantry angles as approximations of the blocked signal and uses a weighted least square regression of these observations to finally determine the blocked signal. The method was first tested with a simulated SMOG on a head phantom. The signal to noise ratio (SNR), which represents the difference of the recovered CBCT image to the original image without the SMOG, was used to evaluate the ability of the IPSF in recovering the missing signal. The IPSF approach was then tested using a Catphan phantom on a prototype SMOG assembly installed in a bench top CBCT system. Results: In the simulated SMOG experiment, the SNRs were increased from 15.1 and 12.7 dB to 35.6 and 28.9 dB comparing with a conventional interpolation method (inpainting method) for a projection and the reconstructed 3D image, respectively, suggesting that IPSF successfully recovered most of blocked signal. In the prototype SMOG experiment, the authors have successfully reconstructed a CBCT image using the IPSF-SMOG approach. The detailed geometric features in
Objectives To evaluate and compare surface doses of a cone beam computed tomography (CBCT) and a multidetector computed tomography (MDCT) device in pediatric ankle and wrist phantoms. Methods Thermoluminescent dosimeters (TLD) were used to measure and compare surface doses between CBCT and MDCT in a left ankle and a right wrist pediatric phantom. In both modalities adapted pediatric dose protocols were utilized to achieve realistic imaging conditions. All measurements were repeated three times to prove test-retest reliability. Additionally, objective and subjective image quality parameters were assessed. Results Average surface doses were 3.8 ±2.1 mGy for the ankle, and 2.2 ±1.3 mGy for the wrist in CBCT. The corresponding surface doses in optimized MDCT were 4.5 ±1.3 mGy for the ankle, and 3.4 ±0.7 mGy for the wrist. Overall, mean surface dose was significantly lower in CBCT (3.0 ±1.9 mGy vs. 3.9 ±1.2 mGy, p<0.001). Subjectively rated general image quality was not significantly different between the study protocols (p = 0.421), whereas objectively measured image quality parameters were in favor of CBCT (p<0.001). Conclusions Adapted extremity CBCT imaging protocols have the potential to fall below optimized pediatric ankle and wrist MDCT doses at comparable image qualities. These possible dose savings warrant further development and research in pediatric extremity CBCT applications. PMID:28570626
Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3â¼21 times and 16â¼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter
Purpose: An unpredictable movement of a patient can occur during SBRT even when immobilization devices are applied. In the SBRT treatments using a conventional linear accelerator detection of such movements relies heavily on human interaction and monitoring. This study aims to detect such positional abnormalities in real-time by assessing intra-fractional gantry mounted kV projection images of a patientâs spine. Methods: We propose a self-CBCT image based spine tracking method consisting of the following steps: (1)Acquire a pre-treatment CBCT image; (2)Transform the CBCT volume according to the couch correction; (3)Acquire kV projections during treatment beam delivery; (4)Simultaneously with each acquisition generatemore » a DRR from the CBCT volume based-on the current projection geometry; (5)Perform an intensity gradient-based 2D registration between spine ROI images of the projection and the DRR images; (6)Report an alarm if the detected 2D displacement is beyond a threshold value. To demonstrate the feasibility, retrospective simulations were performed on 1,896 projections from nine CBCT sessions of three patients who received lung SBRT. The unpredictable movements were simulated by applying random rotations and translations to the reference CBCT prior to each DRR generation. As the ground truth, the 3D translations and/or rotations causing >3 mm displacement of the midpoint of the thoracic spine were regarded as abnormal. In the measurements, different threshold values of 2D displacement were tested to investigate sensitivity and specificity of the proposed method. Results: A linear relationship between the ground truth 3D displacement and the detected 2D displacement was observed (R{sup 2} = 0.44). When the 2D displacement threshold was set to 3.6 mm the overall sensitivity and specificity were 77.7±5.7% and 77.9±3.5% respectively. Conclusion: In this simulation study, it was demonstrated that intrafractional kV projections from an on-board CBCT system
Introduction: Having knowledge about the anatomy of root canal system is essential for success of endodontic treatment. The present study used cone-beam computed tomography (CBCT), to evaluate the prevalence of third root in mandibular first molars in a selected Iranian population. Methods and Materials: A total of 386 CBCT images from subjects referred to oral and maxillofacial radiology department of dental faculty of Tabriz University of Medical Sciences from 2011 to 2013 were selected and evaluated for this study and the cases with well-developed permanent mandibular first molars were included. The 3D images were reconstructed in axial cross sections and evaluated by two endodontists for the presence of the third extra lingual (radix entomolaris) or buccal (radix paramolaris) root. The chi-squared test was used to evaluate the relationship between gender and bilateral incidence of extra roots in mandibular first molars. Results: The distribution of three-rooted mandibular first molars with an additional root was 3%, (3.53% in female and 2.50% in male patients). There was no significant relationship between gender and bilateral occurrence of three-rooted mandibular first molars. Conclusion: The occurrence of three-rooted mandibular first molars in Iranian population is not uncommon which should be taken into consideration by the dental practitioners during root canal treatment of these teeth. PMID:28179928
We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO 3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied.more » Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less
Matsumoto, S; Matsuda, M; Takekawa, M; Okada, M; Hashizume, K; Wada, N; Hori, J; Tamaki, G; Kita, M; Iwata, T; Kakizaki, H
Introduction Nausea and vomiting in pregnancy (NVP) is a condition that commonly affects women in the first trimester of pregnancy. Despite frequently leading to emergency department (ED) visits, little evidence exists to characterize the nature of ED visits or to guide its treatment in the ED. Our objectives were to evaluate the treatment of NVP in the ED and to identify factors that predict return visits to the ED for NVP. Methods We conducted a retrospective database analysis using the electronic medical record from a single, large academic hospital. Demographic and treatment variables were collected using a chart review of 113 ED patient visits with a billing diagnosis of ânausea and vomiting in pregnancyâ or âhyperemesis gravidarum.â Logistic regression analysis was used with a primary outcome of return visit to the ED for the same diagnoses. Results There was wide treatment variability of nausea and vomiting in pregnancy patients in the ED. Of the 113 patient visits, 38 (33.6%) had a return ED visit for NVP. High gravidity (OR 1.31, 95% CI [1.06â1.61]), high parity (OR 1.50 95% CI [1.12â2.00]), and early gestational age (OR 0.74 95% CI [0.60â0.90]) were associated with an increase in return ED visits in univariate logistic regression models, while only early gestational age (OR 0.74 95% CI [0.59â0.91]) was associated with increased return ED visits in a multiple regression model. Admission to the hospital was found to decrease the likelihood of return ED visits (p=0.002). Conclusion NVP can be difficult to manage and has a high ED return visit rate. Optimizing care with aggressive, standardized treatment in the ED and upon discharge, particularly if factors predictive of return ED visits are present, may improve quality of care and reduce ED utilization for this condition. PMID:27625723
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
SU-E-J-114: A Practical Hybrid Method for Improving the Quality of CT-CBCT Deformable Image Registration for Head and Neck Radiotherapy
Comparison of hand and semiautomatic tracing methods for creating maxillofacial artificial organs using sequences of computed tomography (CT) and cone beam computed tomography (CBCT) images.
Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.
Purpose: To develop a novel on-board imaging technique which allows generation of virtual monochromatic (VM) cone-beam CT (CBCT) with a selected energy from combined kilovoltage (kV)/megavoltage (MV) beam projections. Methods: With the current orthogonal kV/MV imaging hardware equipped in modern linear accelerators, both MV projections (from gantry angle of 0°â100°) and kV projections (90°â200°) were acquired as gantry rotated a total of 110°. A selected range of overlap projections between 90° to 100° were then decomposed into two material projections using experimentally determined parameters from orthogonally stacked aluminum and acrylic step-wedges. Given attenuation coefficients of aluminum and acrylic at amore » predetermined energy, one set of VM projections could be synthesized from two corresponding sets of decomposed projections. Two linear functions were generated using projection information at overlap angles to convert kV and MV projections at nonoverlap angles to approximate VM projections for CBCT reconstruction. The contrast-to-noise ratios (CNRs) were calculated for different inserts in VM CBCTs of a CatPhan phantom with various selected energies and compared with those in kV and MV CBCTs. The effect of overlap projection number on CNR was evaluated. Additionally, the effect of beam orientation was studied by scanning the CatPhan sandwiched with two 5 cm solid-water phantoms on both lateral sides and an electronic density phantom with two metal bolt inserts. Results: Proper selection of VM energy [30 and 40 keV for low-density polyethylene (LDPE), polymethylpentene, 2 MeV for Delrin] provided comparable or even better CNR results as compared with kV or MV CBCT. An increased number of overlap kV and MV projection demonstrated only marginal improvements of CNR for different inserts (with the exception of LDPE) and therefore one projection overlap was found to be sufficient for the CatPhan study. It was also evident that the optimal CBCT
Limitations of the education doctorate (EdD) and the emergence of professional practice doctorates have influenced those offering the EdD to re-envision, re-define, and reclaim the EdD as the degree of choice for the next generation of educational leaders. Colleges of education faculty members have used the Carnegie Project on the Educationâ¦
Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.
To compare the initial assessment and management of walk-in emergency department (ED) patients between different types of healthcare providers. A large teaching hospital with an annual ED census of 140â 000 adult patients. A random sample of 384 patients who self-presented to the ED was obtained. A detailed analysis of each patient record was performed by two clinicians. Data were obtained on the presenting condition, and disposition of each patient, either into the ED for further assessment, or discharge. GPs were significantly more likely to discharge patients home as compared to emergency nurses. ED senior nurses were more likely than GPs to stream patients into the ED for further assessment. Of the patients referred into the ED for further assessment by senior ED nurses, the majority were discharged home. There were insufficient numbers of emergency physician assessments for meaningful statistical analysis. The clinician groups studied here demonstrated different patterns of discharge and referral, reflecting their training and experience. When planning operational procedures, the training and background of the staff allocated to each area should be considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II
Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk
Dultra, Fátima Karoline Araújo Alves; Tavares, Alana; Dultra, Joaquim de Almeida; Salles, Cristina; Crusoé-Rebelo, Iêda Margarida; Barbosa, Inessa; Souza-Machado, Adelmir
Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies
Hasemann, Wolfgang; Grossmann, Florian F; Stadler, Rahel; Bingisser, Roland; Breil, Dieter; Hafner, Martina; Kressig, Reto W; Nickel, Christian H
Purpose: Clinical implementation of gated lung SBRT requires tools to verify the accuracy of the target positioning on a daily basis. This is a particular challenge on Elekta linacs where the XVI imaging system does not interface directly to any commercial gating solution. In this study, we used the Elektaâs intra-fractional imaging functionality to perform the pretreatment CBCT verifications and evaluated both the image quality and gating accuracy. Methods: To use intrafraction imaging tools for pretreatment verifications, we planned a 360-degree arc with 1mmx5mm MLC opening. This beam was designed to drive the gantry during the gated CBCT data collection.more » A Catphan phantom was used to evaluate the image quality for the intra-fractional CBCT. A CIRS lung phantom with a 3cm sphereinsert and a moving chest plate were programmed with a simulated breathhold breathing pattern was used to check the gating accuracy. A C-Rad CatalystHD surface mapping system was used to provide the gating signal. Results: The total delivery time of the arc was 90 seconds. The uniformity and low contrast resolution for the intra-fractional CBCT was 1.5% and 3.6%, respectively. The values for the regular CBCT were 1.7% and 2.5%, respectively. The spatial resolution was 7 line-pairs/cm and the 3D spatial integrity was less than 1mm for the intra-fractional CBCT. The gated CBCT clearly demonstrated the accuracy of the gating image acquisition. Conclusion: The intra-fraction CBCT capabilities on an Elekta linac can be used to acquire pre-treatment gated images to verify the accuracy patient positioning. This imaging capability should provide for accurate patient alignments for the delivery of lung SBRT. This research was partially supported by Elekta.« less
SU-E-J-76: CBCT Reconstruction of a Full Couch Using Rigid Registration and Pre-Scanned Couch Image and Its Clinical Application
Effects of combining CBCT technology with visual root canal recurrence in treatment of elderly patients with dental pulp disease.
Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the displayâs three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843
Purpose: To investigate whether a high detection quantum efficiency (DQE) MV detector makes combined kV/MV CBCT clinically practical. Methods: Combined kV/MV CBCT was studied for scan time reduction (STR) and metal artifact reduction (MAR). 6MV CBCT data (dose rate = 0.017 MU/degree) were collected using 1) a novel focused pixelated cadmium tungstate (CWO) scintillator (15mm thickness, DQE(0) = 22%, 0.784mm pixel pitch) coupled to a flat panel imager, and 2) a commercial portal imager with a 133mg/cm{sup 2} gadolinium oxysulfide (GOS) screen (DQE(0) = 1.2%). The 100kVp data were acquired using a commercial imager employing a columnar cesium iodide scintillatormore » (DQE(0) = 70%) with a dose rate of 0.0016 cGy/degree. For STR, MV and kV projections spanning 105° were combined to constitute a complete CBCT scan. Total dose was â¼2cGy and acquisition time was 18s. For MAR, only the metalcorrupted pixels in the kV projections were replaced with MV data resulting in a total dose of less than 1cGy for a 360° scan. Image quality was assessed using an 18-cm diameter electron density phantom with nine tissue inserts, some of which were replaced with steel rods for MAR studies. Results: The CWO contrast-to-noise ratio (CNR) was â¼4.0x higher than the GOS CNR and was â¼4.8x lower than the kV CNR when normalized for dose. When CWO MV data were combined with kV data for STR, all contrast inserts were visible, but only two were detectable in the composite kV/GOS image. Metal artifacts were greatly reduced using the kV/MV MAR technique with all contrast inserts clearly visible in the composite kV/CWO image but only two inserts visible in the composite kV/GOS image. Conclusion: We have demonstrated that a high DQE MV detector significantly improves kV/MV CBCT image quality thus enabling scan time reduction and metal artifact reduction without a severe dose penalty. AW and JS-L are employees of Varian, RF is an employee of Siemens.« less
Purpose: The Iterative Subtraction Algorithm (ISA) method generates retrospectively a pre-selected motion phase cone-beam CT image from the full motion cone-beam CT acquired at standard rotation speed. This work evaluates ISA method with real lung patient data. Methods: The goal of the ISA algorithm is to extract motion and no- motion components form the full reconstruction CBCT. The workflow consists of subtracting from the full CBCT all of the undesired motion phases and obtain a motion de-blurred single-phase CBCT image, followed by iteration of this subtraction process. ISA is realized as follows: 1) The projections are sorted to various phases,more » and from all phases, a full reconstruction is performed to generate an image CTM. 2) Generate forward projections of CTM at the desired phase projection angles, the subtraction of projection and the forward projection will reconstruct a CTSub1, which diminishes the desired phase component. 3) By adding back the CTSub1 to CTm, no motion CBCT, CTS1, can be computed. 4) CTS1 still contains residual motion component. 5) This residual motion component can be further reduced by iteration.The ISA 4DCBCT technique was implemented using Varian Trilogy accelerator OBI system. To evaluate the method, a lung patient CBCT dataset was used. The reconstruction algorithm is FDK. Results: The single phase CBCT reconstruction generated via ISA successfully isolates the desired motion phase from the full motion CBCT, effectively reducing motion blur. It also shows improved image quality, with reduced streak artifacts with respect to the reconstructions from unprocessed phase-sorted projections only. Conclusion: A CBCT motion de-blurring algorithm, ISA, has been developed and evaluated with lung patient data. The algorithm allows improved visualization of a single phase motion extracted from a standard CBCT dataset. This study has been supported by National Institute of Health through R01CA133539.« less
(1) Review the reasons, timing, and costs for children presenting to the emergency department (ED) after adenotonsillectomy (T&A). Case series with chart review. Tertiary care children's hospital. A standardized activity-based hospital accounting system was used to identify 437 children from an academic pediatric otolaryngology practice presenting to the ED after T&A from 2009 to 2012. The reason for presentation, timing after surgery, and facility costs were recorded. The study cohort represented 13.3% of the 3198 patients who underwent T&A during that time period. Overall, 133 (4.2%) presented for dehydration, 106 (3.3%) presented for post-tonsillectomy hemorrhage, 65 (2.0%) for poorly controlled pain, 42 (1.3%) for fever, 29 (1.0%) for vomiting/nausea/GI discomfort, 22 (0.7%) for respiratory complications, and 12 (0.4%) for miscellaneous reasons related to the operation; 28 (0.8%) were unrelated to the T&A and excluded. Mean postoperative day at the time of ED presentation was 4.4 (95% CI, 4.1-4.7). The mean cost per patient presenting to the ED was $1420 (95% CI, $1104-$1737), the most costly subgroups being those presenting with respiratory complications ($2855; 95% CI, $1434-$4277), hemorrhage ($1502; 95% CI, $1216-$1787), and dehydration ($1372; 95% CI, $995-$1750). The least costly subgroup was acute postoperative pain ($781; 95% CI, $282-$1200). A significant portion of children present to the ED after T&A for poorly controlled pain, dehydration, or fever. The costs from these visits are significant. Accounting for these costs in the global care for pediatric T&A could assist in calculating appropriate reimbursement for bundled payments in this climate of health care reform. © American Academy of OtolaryngologyâHead and Neck Surgery Foundation 2015.
A nurse-initiated high dose, opioid protocol for vaso-occlusive crisis (VOC) was implemented. Total intravenous morphine sulfate equivalents (IVMSE) in mgs] and safety was evaluated. A medical record review was conducted for all ED visits in adult patients with VOC post protocol implementation. Opioids doses and routes administered during the ED stay, and six hours into the hospital admission were abstracted and total IVMSE administered calculated. Oxygen saturation (SPO2), respiratory rate (RR), administration of naloxone or vasoactive medications, evidence of respiratory arrest, or any other types of resuscitation effort were abstracted. A RR of <10 or SPO2 <92% were coded as abnormal. Descriptive statistics report the total dose. Logistic regression was used to predict abnormal events. Predictors were age, gender, ED dose (10 mg increments) administered, and time from 1st dose to discharge from ED. 72 patients, 603 visits, 276 admitted. The total (ED & hospital dose) mean (95% CI) mg IVMSE administered for all visits was 93 mg (CI 86, 100), ED visit 63 mg (CI 59, 67) and hospital 66 mg (CI 59, 72). The mean (SD) time from administration of 1st analgesic dose to discharge from the ED was 203 (143) minutes, (range = 30-1396 minutes). During two visits, patients experienced a RR <10; while 61 visits were associated with a SPO2 <92%. No medications were administered, or resuscitative measures required. Controlling for demographics and evaluated at the average total ED dose, the longer patients were in the ED, patients were 1.359 times more likely to experience an abnormal vital sign. Controlling for demographics and evaluated at the average total time in the ED, for every 10 mg increase in IVMSE, patients were 1.057 times more likely to experience an abnormal vital sign. The effect of ED dose on the odds of experiencing an abnormal vital sign decreased by a multiplicative factor of 0.0970 for every 1 hour increase in time until discharge. The larger the dose
The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models.
Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald
The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic
Status epilepticus is a life-threatening, time-sensitive emergency. Acquiring an electroencephalogram (EEG) in the emergency department (ED) could impact therapeutic and disposition decisions for patients with suspected status epilepticus. The objective of this study is to estimate the proportion of EEGs diagnostic for seizures in patients presenting to an ED with a complaint of seizures. This retrospective chart review included adults presenting to the ED of an urban, academic, tertiary care hospital with suspected seizures or status epilepticus, who received an EEG within 24 hours of hospital admission. Data abstraction was performed by a single, trained, nonblinded abstractor. Seizures were defined as an epileptologist's diagnosis of either seizures or status epilepticus on EEG. The proportion of patients with seizures is given with confidence interval95 (CI95). Of 120 included patients, 67 (56%) had a history of epilepsy. Mean age was 52 years (SD, 16), 58% were White, and 61% were male. Within 24 hours, 3% had an EEG diagnostic for seizures. Electroencephalogram was obtained in the ED in 32 (27%) of 120 (CI95, 19%-35%), and 2 (6%) of 32 (CI95, 1%-19%) had seizures. Electroencephalogram was performed inpatient for 88 (73%) of 120 (CI95, 65%-81%), and 2 (2%) of 88 (CI95, 0.5%-7.1%) had seizures. Only 3% of ED patients with suspected seizures or status epilepticus had EEG confirmation of seizures within 24 hours. Early EEG acquisition in the ED may identify a group of patients amenable to ED observation and subsequent discharge from the hospital. Copyright © 2014 Elsevier Inc. All rights reserved.
To investigate the use of 3D plastic models, printed from cone beam computed tomography (CBCT) data, for accurate diagnosis and conservative treatment of a complex case of dens invaginatus. A chronic apical abscess with a draining sinus tract was diagnosed during the treatment planning stage of orthodontic therapy. Radiographic examination revealed a large radiolucent area associated with an invaginated right maxillary central incisor, which was found to contain a vital pulp. The affected tooth was strategic in the dental arch. Conventional periapical radiographs provided only partial information about the invagination and its relationship with the main root canal and with the periapical tissues. A limited-volume CBCT scan of the maxilla did not show evidence of communication between the infected invagination and the pulp in the main root canal, which could explain the pulp vitality. A novel method was adopted to allow for instrumentation, disinfection and filling of the invagination, without compromising the vitality of the pulp in the complex root canal system. The CBCT data were used to produce precise 3D plastic models of the tooth. These models facilitated the treatment planning process and the trial of treatment approaches. This approach allowed the vitality of the pulp to be maintained in the complex root canal space of the main root canal whilst enabling the healing of the periapical tissues. Even when extensive periapical pathosis is associated with a tooth with type III dens invaginatus, pulp sensibility tests should be performed. CBCT is a diagnostic tool that may allow for the management of such teeth with complex anatomy. 3D printed plastic models may be a valuable aid in the process of assessing and planning effective treatment modalities and practicing them ex vivo before actually performing the clinical procedure. Unconventional technological approaches may be required for detailed treatment planning of complex cases of dens invaginatus. © 2012
The aim of this study is to evaluate the accuracy of a surgical template-aided implant placement produced by rapid prototyping using a DICOM dataset from cone beam computer tomography (CBCT). On the basis of CBCT scans (Sirona® Galileos), a total of ten models were produced using a rapid-prototyping three-dimensional printer. On the same patients, impressions were performed to compare fitting accuracy of both methods. From the models made by impression, templates were produced and accuracy was compared and analyzed with the rapid-prototyping model. Whereas templates made by conventional procedure had an excellent accuracy, the fitting accuracy of those produced by DICOM datasets was not sufficient. Deviations ranged between 2.0 and 3.5 mm, after modification of models between 1.4 and 3.1 mm. The findings of this study suggest that the accuracy of the low-dose Sirona Galileos® DICOM dataset seems to show a high deviation, which is not useable for accurate surgical transfer for example in implant surgery.
Some EDs are finding that the unique skill sets offered by physical therapists (PT) can be an asset to emergency care while also improving the patient experience. Experts say PTs are particularly valuable in the management of musculoskeletal pain and injuries, but they are also being used for wound care, gait training, and balance assessment. ED administrators say consistent, daily coverage is essential to making a PT program successful; otherwise, ED clinicians will neglect to use their services. PTs need to be comfortable with proactively marketing their skills to other ED clinicians who may not be used to having access to this resource. Experts say PT services in the ED can be reimbursed at a level that is consistent with reimbursement in other inpatient and outpatient settings.
TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.
Deployment System Model | Energy Analysis | NREL About Regional Energy Deployment System Model -ReEDS About Regional Energy Deployment System Model-ReEDS The Regional Energy Deployment System (ReEDS ) is a long-term, capacity-expansion model for the deployment of electric power generation technologies
The biennial international conference on Extended Defects in Semiconductors started in 1978 with a meeting in Hünfeld, Germany. Subsequent meetings rotated between Poland, France, Great Britain, Germany, Russia and Italy, culminating in EDS2004 in Chernogolovka, EDS2006 in Halle and EDS2008 in Poitiers. EDS2010 was held at the University of Sussex at Brighton, UK from September 19th to 24th. An extension of the tabulation of this history, which first appeared on the EDS2006 website, is given in the attached PDF. It is with sadness that we note one of the founders of the series, Prof. Dr Helmut Alexander, passed away on 3 December 2009 and we were proud to dedicate EDS2010 to his memory. It has become a tradition to make an award in his name, and this year it was made to Ivan Isacov for his poster "Electrical levels of dislocation networks in p- and n-type silicon". A short and warm celebration of Prof. Dr Alexander's life by his friends and colleagues, Prof. Drs Helmut Gottschalk, Eicke Weber and Wolfgang Schröter, is included in this volume. The conference was a forum for the state-of-the-art of investigation and modelling of extended defects in semiconductors. Scientists from universities, research institutes and industry made contributions to a deeper understanding of extended defects, their interaction with point defects and their role in the development of semiconductor technology. The remit of the conference included extended defects, nanostructures, nanoparticles, quantum dots and interfaces within semiconducting materials ranging from narrow to wide band gaps, including graphene-derived materials and diamond. Scientific interests range from defect geometry, electronic structure, dynamics, spectroscopy, microscopy, reactions and chemistry to introduction mechanisms, such as implantation and strained layers and the operation of devices such as integrated circuits, heterostructures, and solar cells. The organisers were confronted with a long period between
A variety of interventions have been proposed to manage rising demand for Emergency and Urgent Care, described by an NHS England review as unsustainable in the long term. However it is unlikely that any suggested approach will be equally suitable for the diverse population of ED users.We aimed to understand the patterns of demand amongst different types of patients attending ED. We also sought to understand the intended and unintended effects of demand management initiatives. Our study combined insights from routine data, a survey of ED patients, and qualitative interviews with ED staff. This paper describes the results of our analysis of the interviews. We conducted semi-structured interviews with 25 ED and Urgent Care Centre staff across 7 hospital sites in Yorkshire and Humber between 25 April and 11 July 2016. The interview topic guide asked about 4 broad areas; job role, description of patients and their impact on demand, description of inappropriate attendance, and current/future initiatives to deal with rising demand. Interviews were transcribed verbatim and analysed using framework analysis. We analysed the results to identify groups of patients with different patterns of use of ED services. We also explored ED staff experiences of demand management initiatives, and their suggestions for future initiatives. Although we did not ask specifically about patients' age, our analysis revealed that ED staff categorised attenders as children and young people, working age people, and older people. These groups had different reasons for attendance, different routes to the ED, different rate of non-urgent attendance, and different issues driving demand. Staff also described variation in the time taken to treat patients of different ages, with the oldest and youngest patients described as requiring the most time.There was no consensus amongst staff about the effectiveness of initiatives for managing demand. A strikingly wide variety of initiatives were mentioned
The first XXXXD model, the 1000D, was concurrent with the 450D, but was essentially a 350D with a newer sensor/processor. For example, the 350D had a 7-point AF system. The 400D and 450D had a 9-point AF system. But the 1000D inherited the 350D's 7-point AF system. It was just updated to the 400D's 10MP sensor and the Digic III processor.
Objectives: To develop an observer-free method for quantitatively evaluating the image quality of CBCT images by applying just-noticeable difference (JND). Methods: We used two test objects: (1) a Teflon (polytetrafluoroethylene) plate phantom attached to a dry human mandible; and (2) a block phantom consisting of a Teflon step phantom and an aluminium step phantom. These phantoms had holes with different depths. They were immersed in water and scanned with a CB MercuRay (Hitachi Medical Corporation, Tokyo, Japan) at tube voltages of 120âkV, 100âkV, 80âkV and 60âkV. Superimposed images of the phantoms with holes were used for evaluation. The number of detectable holes was used as an index of image quality. In detecting holes quantitatively, the threshold grey value (ÎG), which differentiated holes from the background, was calculated using a specific threshold (the JND), and we extracted the holes with grey values above ÎG. The indices obtained by this quantitative method (the extracted hole values) were compared with the observer evaluations (the observed hole values). In addition, the contrast-to-noise ratio (CNR) of the shallowest detectable holes and the deepest undetectable holes were measured to evaluate the contribution of CNR to detectability. Results: The results of this evaluation method corresponded almost exactly with the evaluations made by observers. The extracted hole values reflected the influence of different tube voltages. All extracted holes had an area with a CNR of â¥1.5. Conclusions: This quantitative method of evaluating CBCT image quality may be more useful and less time-consuming than evaluation by observation. PMID:28045343
Emergency department (ED) visits are made by cancer patients for symptom management, treatment effects, oncologic emergencies, or end of life care. While most patients prefer to die at home, many die in health care institutions. The purpose of this study is to describe visit characteristics of cancer patients who died in the ED and their most common chief complaints using 2008 ED visit data from the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT). Of the 37,760 cancer-related ED visits, 283 resulted in death. For lung cancer patients, 104 died in the ED with 70.9% dying on their first ED visit. Research on factors precipitating ED visits by cancer patients is needed to address end of life care needs. PMID:22556288
Four-dimensional (4D) X-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose to use a moving blocker (MB) during the 4D CBCT acquisition ("4D MB") and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the X-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics. © 2018
Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.
Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza
Blind calibration, i.e. calibration without a priori knowledge of the source model, is robust to the presence of unknown sources such as transient phenomena or (low-power) broad-band radio frequency interference that escaped detection. In this paper, we present a novel method for blind calibration of a radio interferometric array assuming that the observed field only contains a small number of discrete point sources. We show the huge computational advantage over previous blind calibration methods and we assess its statistical efficiency and robustness to noise and the quality of the initial estimate. We demonstrate the method on actual data from a Low-Frequency Array low-band antenna station showing that our blind calibration is able to recover the same gain solutions as the regular calibration approach, as expected from theory and simulations. We also discuss the implications of our findings for the robustness of regular self-calibration to poor starting models.
Hashemi, SayedMasoud; Song, William Y; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G; Ruschin, Mark
Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup â1}, fast 100°·min{sup â1}). Using a standard CBCT-QA phantom(Catphan500,more » The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good
The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The objective of the study was to investigate initial clinical characteristics that can suggest an early diagnosis of patients with acute renal infarction presenting with flank and/or abdominal pain in the emergency department (ED). From January 1, 1996, through December 31, 2005, 20 adult patients with renal infarction diagnosed by contrast-enhanced computed tomography in the ED were enrolled. Medical records, including demographic data, risk factors for thromboembolism, initial clinical presentations, laboratory data, treatment programs and outcomes, were retrospectively reviewed and analyzed. Mean patient age was 60.3 years (range, 21-80). The estimated incidence of renal infarction was 0.004% (20 of 481,540) among the ED census. The median time of onset of symptoms before the ED visit was 31 hours (range, 1-285). Eighteen patients (90%) had a history of more than 1 risk factor for thromboembolic events. In clinical presentations, all the patients had either abdominal or flank pain and tenderness. Nineteen patients (95%) had an elevated serum lactate dehydrogenase level with a mean +/- SD of 812.1 +/- 569.4 U/L. Sixteen patients (80%) presented with the triad--persisting flank or abdominal pain/tenderness, elevated serum lactate dehydrogenase level, and proteinuria. Among all 20 patients, 10 patients (50%) were diagnosed as having renal infarction at the initial ED visit. No specific clinical characteristics could be identified to distinguish those patients diagnosed early and those with delayed diagnosis. All 20 patients received medical treatment with coumadin, which was given in combination with heparin treatment in 11, peripheral intravenous and/or local intra-arterial thrombolytics with urokinase in 5, and mitral valve replacement in 1. No patient died. Although 4 patients had a mildly elevated serum creatinine level (>1.5 mg/dL) during hospitalization, none of them needs dialysis after more than 1 year of follow-up. In this study, we delineated
"In this talk I will review the strategies in CASU to calibrate wide field surveys, in particular applied to data taken with the VISTA telescope. These include traditional night-by-night calibrations along with the search for a global, coherent calibration of all the data once observations are finished. The difficulties of obtaining photometric accuracy of a few percent and a good absolute calibration will also be discussed."
A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined.
To assess the patterns of emergency department (ED) utilisation among those with and without criminal justice contact in California in 2014, comparing variation in ED use, visit frequency, diagnoses and insurance coverage. Retrospective, cross-sectional study. Analyses included ED visits to all licensed hospitals in California using statewide data on all ED encounters in 2014. Study participants included 3 757 870 non-elderly adult ED patients who made at least one ED visit in 2014. We assessed the patterns and characteristics of ED visits among those with criminal justice contact-patients who were either admitted to or discharged from the ED by a correctional institution-with patients who did not have criminal justice contact recorded during an ED visit. ED patients with criminal justice contact had higher proportions of frequent ED users (27.2% vs 9.4%), were at higher risk of an ED visit resulting in hospitalisation (26.6% vs 15.2%) and had higher prevalence of mental health conditions (52.8% vs 30.4%) compared with patients with no criminal justice contact recorded during an ED visit. Of the top 10, four primary diagnoses among patients with criminal justice contact were related to behavioural health conditions, accounting for 19.0% of all primary diagnoses in this population. In contrast, behavioural health conditions were absent from the top 10 primary diagnoses in ED patients with no observed criminal justice contact. Despite a high burden of disease, a lack of health insurance coverage was more common among those with criminal justice contact than those without (41.3% vs 14.1%). Given that a large proportion of ED patients with criminal justice contact are frequent users with considerable mental health conditions, current efforts in California's Medicaid programme to identify individuals in need of coordinated services could reduce costly ED utilisation among this group. © Article author(s) (or their employer(s) unless otherwise stated in the text of the
Purpose: To design a dedicated x-ray cone-beam CT (CBCT) system suitable to deployment at the point-of-care and offering reliable detection of acute intracranial hemorrhage (ICH), traumatic brain injury (TBI), stroke, and other head and neck injuries. Methods: A comprehensive task-based image quality model was developed to guide system design and optimization of a prototype head scanner suitable to imaging of acute TBI and ICH. Previously reported models were expanded to include the effects of x-ray scatter correction necessary for detection of low contrast ICH and the contribution of bit depth (digitization noise) to imaging performance. Task-based detectablity index provided themore » objective function for optimization of system geometry, x-ray source, detector type, anti-scatter grid, and technique at 10â25 mGy dose. Optimal characteristics were experimentally validated using a custom head phantom with 50 HU contrast ICH inserts imaged on a CBCT imaging bench allowing variation of system geometry, focal spot size, detector, grid selection, and x-ray technique. Results: The model guided selection of system geometry with a nominal source-detector distance 1100 mm and optimal magnification of 1.50. Focal spot size â¼0.6 mm was sufficient for spatial resolution requirements in ICH detection. Imaging at 90 kVp yielded the best tradeoff between noise and contrast. The model provided quantitation of tradeoffs between flat-panel and CMOS detectors with respect to electronic noise, field of view, and readout speed required for imaging of ICH. An anti-scatter grid was shown to provide modest benefit in conjunction with post-acquisition scatter correction. Images of the head phantom demonstrate visualization of millimeter-scale simulated ICH. Conclusions: Performance consistent with acute TBI and ICH detection is feasible with model-based system design and robust artifact correction in a dedicated head CBCT system. Further improvements can be achieved with
Purpose Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of âground-truthâ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Materials/Methods Three pairs of CT/CBCT datasets were chosen for this IRB-approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and 3 implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Results Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among
Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.
Objectives: To determine the effective dose and CT dose index (CTDI) for a range of imaging protocols using the Sirona GALILEOS® Comfort CBCT scanner (Sirona Dental Systems GmbH, Bensheim, Germany). Methods: Calibrated optically stimulated luminescence dosemeters were placed at 26 sites in the head and neck of a modified RANDO® phantom (The Phantom Laboratory, Greenwich, NY). Effective dose was calculated for 12 different scanning protocols. CTDI measurements were also performed to determine the doseâlength product (DLP) and the ratio of effective dose to DLP for each scanning protocol. Results: The effective dose for a full maxillomandibular scan at 42âmAs was 102â±â1âμSv and remained unchanged with varying contrast and resolution settings. This compares with 71âμSv for a maxillary scan and 76âμSv for a mandibular scan with identical milliampere-seconds (mAs) at high contrast and resolution settings. Conclusions: Changes to mAs and beam collimation have a significant influence on effective dose. Effective dose and DLP vary linearly with mAs. A collimated maxillary or mandibular scan decreases effective dose by approximately 29% and 24%, respectively, as compared with a full maxillomandibular scan. Changes to contrast and resolution settings have little influence on effective dose. This study provides data for setting individualized patient exposure protocols to minimize patient dose from ionizing radiation used for diagnostic or treatment planning tasks in dentistry. PMID:25358865
We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 à 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LAâs and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
Image-Guided Radiation Therapy (IGRT) aims at increasing the precision of radiation dose delivery. In the context of prostate cancer, a planning Computed Tomography (CT) image with manually defined prostate and organs at risk (OAR) delineations is usually associated with daily Cone Beam Computed Tomography (CBCT) follow-up images. The CBCT images allow to visualize the prostate position and to reposition the patient accordingly. They also should be used to evaluate the dose received by the organs at each fraction of the treatment. To do so, the first step is a prostate and OAR segmentation on the daily CBCTs, which is very timeconsuming. To simplify this task, CT to CBCT non-rigid registration could be used in order to propagate the original CT delineations in the CBCT images. For this aim, we compared several non-rigid registration methods. They are all based on the Mutual Information (MI) similarity measure, and use a BSpline transformation model. But we add different constraints to this global scheme in order to evaluate their impact on the final results. These algorithms are investigated on two real datasets, representing a total of 70 CBCT on which a reference delineation has been realized. The evaluation is led using the Dice Similarity Coefficient (DSC) as a quality criteria. The experiments show that a rigid penalty term on the bones improves the final registration result, providing high quality propagated delineations.
NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber.
DoÄan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S.; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa
Wang, Hao; Nejtek, Vicki A; Zieger, Dawn; Robinson, Richard D; Schrader, Chet D; Phariss, Chase; Ku, Jocelyn; Zenarosa, Nestor R
Robinson, Paul; Hellier, Jennifer; Barrett, Barbara; Barzdaitiene, Daiva; Bateman, Anthony; Bogaardt, Alexandra; Clare, Ajay; Somers, Nadia; O'Callaghan, Aine; Goldsmith, Kimberley; Kern, Nikola; Schmidt, Ulrike; Morando, Sara; Ouellet-Courtois, Catherine; Roberts, Alice; Skårderud, Finn; Fonagy, Peter
A successful ED relies on its leaders to master and demonstrate core competencies to be effective in the many arenas in which they interact and are responsible. A unique matrix model for the assessment of an ED leadership's key administrative skill sets is presented. The model incorporates capabilities related to the individual's cognitive aptitude, experience, acquired technical skills, behavioral characteristics, as well as the ability to manage relationships effectively. Based on the personnel inventory using the matrix, focused evaluation, development, and recruitment of ED key leaders occurs. This dynamic tool has provided a unique perspective for the evaluation and enhancement of overall ED leadership performance. It is hoped that incorporation of such a model will similarly improve the accomplishments of EDs at other institutions.
The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.
Radiometer calibration methods and resulting irradiance differences: Radiometer calibration methods and resulting irradiance differences
Principal preparation programs in Kentucky can use the items in the Dispositions, Dimensions, and Functions for School Leaders (EPSB, 2008) as mastery benchmarks to quantify incoming Educational Specialist (Ed.S) students' perceived level of mastery. This can serve both internal and external purposes by providing diagnostic feedback to studentsâ¦
Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study
The National Council on Economic Education's (NCEE) EconEdLink site provides lessons and classroom learning activities based on economics topics in the news, as well as access to real-time economic data. EconEdLink's content is designed to help integrate economic concepts across the curriculum as outlined in the Voluntary National Contentâ¦
There are few data regarding mechanical ventilation and ARDS in the ED. This could be a vital arena for prevention and treatment. This study was a multicenter, observational, prospective, cohort study aimed at analyzing ventilation practices in the ED. The primary outcome was the incidence of ARDS after admission. Multivariable logistic regression was used to determine the predictors of ARDS. We analyzed 219 patients receiving mechanical ventilation to assess ED ventilation practices. Median tidal volume was 7.6 mL/kg predicted body weight (PBW) (interquartile range, 6.9-8.9), with a range of 4.3 to 12.2 mL/kg PBW. Lung-protective ventilation was used in 122 patients (55.7%). The incidence of ARDS after admission from the ED was 14.7%, with a mean onset of 2.3 days. Progression to ARDS was associated with higher illness severity and intubation in the prehospital environment or transferring facility. Of the 15 patients with ARDS in the ED (6.8%), lung-protective ventilation was used in seven (46.7%). Patients who progressed to ARDS experienced greater duration in organ failure and ICU length of stay and higher mortality. Lung-protective ventilation is infrequent in patients receiving mechanical ventilation in the ED, regardless of ARDS status. Progression to ARDS is common after admission, occurs early, and worsens outcome. Patient- and treatment-related factors present in the ED are associated with ARDS. Given the limited treatment options for ARDS, and the early onset after admission from the ED, measures to prevent onset and to mitigate severity should be instituted in the ED. ClinicalTrials.gov; No.: NCT01628523; URL: www.clinicaltrials.gov.
Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity
The anatomy of the pterygopalatine fossa keeps a traditional level and is viewed as constant, even though a series of structures neighboring the fossa are known to present individual variations. We aimed to evaluate on 3D volume renderizations the anatomical variables of the pterygopalatine fossa, as related to the variable pneumatization patterns of the bones surrounding the fossa. The study was performed retrospectively on cone beam computed tomography (CBCT) scans of 100 patients. The pterygopalatine fossa was divided into an upper (orbital) and a lower (pterygomaxillary) floor; the medial compartment of the orbital floor lodges the pterygopalatine ganglion. The pneumatization patterns of the pterygopalatine fossa orbital floor walls were variable: (a) the posterior wall pneumatization pattern was determined in 89.5 % by recesses of the sphenoidal sinus related to the maxillary nerve and pterygoid canals; (b) the upper continuation of the pterygopalatine fossa with the orbital apex was narrowed in 79.5 % by ethmoid air cells and/or a maxillary recess of the sphenoidal sinus; (c) according to its pneumatization pattern, the anterior wall of the pterygopalatine fossa was a maxillary (40.5 %), maxillo-ethmoidal (46.5 %), or maxillo-sphenoidal (13 %) wall. The logistic regression models showed that the maxillo-ethmoidal type of pterygopalatine fossa anterior wall was significantly associated with a sphenoidal sinus only expanded above the pterygoid canal and a spheno-ethmoidal upper wall. The pterygopalatine fossa viewed as an intersinus space is related to variable pneumatization patterns which can be accurately identified by CBCT and 3DVR studies, for anatomic and preoperatory purposes.
Purpose: To enable adaptive intensity modulated proton therapy for sites sensitive to inter-fractional changes on the basis of accurate CBCT-based proton dose calculations. To this aim two CBCT intensity correction methods are considered: planning CT (pCT) to CBCT DIR and projection correction based on pCT DIR prior. Methods: 3 H&N and 3 prostate cancer patients with CBCT images and corresponding projections were used in this study, in addition to pCT and re-planning CT (rpCT) images (H&N only). A virtual CT (vCT) was generated by pCT to CBCT DIR. In a second approach, the vCT was used as prior for scattermore » correction of the CBCT projections to yield a CBCTcor image. BEV 2D range maps of SFUD IMPT plans were compared. For the prostate cases, the geometric accuracy of the vCT was also evaluated by contour comparison to physician delineation of the CBCTcor and original CBCT. Results: SFUD dose calculations on vCT and CBCTcor were found to be within 3mm for 97% to 99% of 2D range maps. Median range differences compared to rpCT were below 0.5mm. Analysis showed that the DIR-based vCT approach exhibits inaccuracies in the pelvic region due to the very low soft-tissue contrast in the CBCT. The CBCTcor approach yielded results closer to the original CBCT in terms of DICE coefficients than the vCT (median 0.91 vs 0.81) for targets and OARs. In general, the CBCTcor approach was less affected by inaccuracies of the DIR used during the generation of the vCT prior. Conclusion: Both techniques yield 3D CBCT images with intensities equivalent to diagnostic CT and appear suitable for IMPT dose calculation for most sites. For H&N cases, no considerable differences between the two techniques were found, while improved results of the CBCTcor were observed for pelvic cases due to the reduced sensitivity to registration inaccuracies. Deutsche Forschungsgemeinschaft (MAP); Bundesministerium fur Bildung und Forschung (01IB13001)« less
Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.
Cone-Beam Computed Tomography (CBCT) Hepatic Arteriography in Chemoembolization for Hepatocellular Carcinoma: Performance Depicting Tumors and Tumor Feeders
We sought to identify factors increasing the odds of ED utilization among intellectually disabled (ID) adults and differentiate their discharge diagnoses from the general adult ED population. This was a retrospective, observational open cohort study of all ID adults residing at an intermediate care facility and their ED visits to a tertiary center (January 1, 2007-July 30, 2008). We abstracted from the intermediate care facility database subjects' demographic, ID, health and adaptive status variables, and their requirement of ED care/hospitalization. We obtained from the hospital database the primary International Classification of Diseases 9 ED/hospital discharge diagnoses for the study and general adult population. Using multivariate logistic regression, we computed odds ratios (OR) for ED utilization/hospitalization in the cohort. Using the conditional large-sample binomial test, we differentiated the study and general populations' discharge diagnoses. A total of 433 subjects met the inclusion criteria. Gastrostomy/jejunostomy increased the odds of ED utilization (OR, 4.16; confidence interval [CI], 1.64-10.58). Partial help to feed (OR, 2.59; CI, 1.14-5.88), gastrostomy/jejunostomy (OR, 3.26; CI, 1.30-8.18), and increasing number of prescribed medications (OR, 1.08; CI, 1.03-1.14) increased the odds of hospitalization. Auditory impairment (OR, 0.45; CI, 0.23-0.88) decreased the odds of hospitalization. For ED discharge diagnoses, ID adults were more likely (P < .05) than the general population to have diagnoses among digestive disorders and ill-defined symptoms/signs. For hospital discharge diagnoses, ID adults were more likely (P < .05) to have diagnoses among infectious/parasitic, nervous system, and respiratory disorders. Among ID adults, feeding status increased the odds of ED utilization, feeding status, and increasing number of prescribed medications of that hospitalization. Intellectually disabled adults' discharge diagnoses differed significantly from
Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feretâs diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.
Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Rahimi, Saeed; Mokhtari, Hadi; Ranjkesh, Bahram; Johari, Masoomeh; Frough Reyhani, Mohammad; Shahi, Shahriar; Seif Reyhani, Sina
This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.
Purpose: The objective of this study is to propose an alternative QA technique that analyzes imaging quality(IQ) in CBCT-QA processing. Methods: A catphan phantom was used to take CT imaging data set that were imported into a treatment planning system - Eclipse. The image quality was analyzed in terms of in-slice geometry resolution, Hounsfield numbers(HU) accuracy, mean-slice thickness, edge-to-center uniformity, low contrast resolution, and high contrast spatial resolution in Eclipse workstation. The CBCT-QA was also analyzed by OBI-workstation and a commercial software. Comparison was made to evaluation feasibility in a TPS environment. Results: The analysis of IQ was conducted inmore » Eclipse v10.0 TPS. In-slice geometric resolution was measured between 2-rods in section CTP404 and repeated for all 4 rods with the difference between expected and measured values less than +/â0.1 cm. For HU, the difference between expected and measured values in HU was found much less than +/â40. Mean slice thickness measured by a distance on the wire proportional to scanner increment multiplying by a factor of 0.42. After repeating measurements to 4 wires, the average difference between expected and measured values was less +/â0.124 mm in slice thickness. HU uniformity was measured in section CTP486 with the tolerance less than +/â40 HU. Low contrast resolution in section CTP515 and high contrast resolution in section CTP528 were found to be 7 disks in diameter of 4 mm and 6 lp/cm, respectively. Eclipse TPS results indicated a good agreement to those obtained in OBI workstation and ImagePro software for major parameters. Conclusion: An analysis of IQ was proposed as an alternative CBCT QA processing. Based upon measured data assessment, proposed method was accurate and consistent to IQ evaluation and TG142 guideline. The approach was to utilize TPS resource, which can be valuable to re-planning, verification, and delivery in adaptive therapy.« less
Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements
Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. Themore » calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the softwareâs auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.« less
Despite the common occurrence of acute cognitive impairment in elderly emergency department (ED) patients, there is much uncertainty regarding the evaluation and management of this syndrome. We performed a retrospective cohort study of all patients 60 years of age and older transported by emergency medical services (EMS) to hospital EDs in Forsyth County, North Carolina, during 1990 specifically for evaluation of acute cognitive impairment. Five percent (227 of 4,688) of EMS transports during this time period were for the purpose of evaluation of acute cognitive impairment. Compared with community-dwelling patients (n = 105), nursing home patients (n = 47) had a higher prevalence of final ED diagnoses indicative of infection (42.5% v 13.3%) and a lower prevalence of diagnoses indicative of cerebrovascular disease (10.6% v 22.9%) as the etiology of cognitive impairment. The rates of hospitalization and mortality were 74.3% and 28.9%, respectively. The projected aging of the US population and the high prevalence of this syndrome among elderly patients make better understanding of this syndrome essential for ED providers.
Purpose: Scatter correction in cone-beam computed tomography (CBCT) has obvious effect on the removal of image noise, the cup artifact and the increase of image contrast. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, the inconvenience of mechanics and propensity to residual artifacts limited the further evolution of basic and clinical research. Here, we propose a rotating collimator-based approach, in conjunction with reconstruction based on a discrete Radon transform and Tchebichef moments algorithm, to correct scatter-induced artifacts. Methods: A rotating-collimator, comprising round tungsten alloy strips, was mounted on a linear actuator.more » The rotating-collimator is divided into 6 portions equally. The round strips space is evenly spaced on each portion but staggered between different portions. A step motor connected to the rotating collimator drove the blocker to around x-ray source during the CBCT acquisition. The CBCT reconstruction based on a discrete Radon transform and Tchebichef moments algorithm is performed. Experimental studies using water phantom and Catphan504 were carried out to evaluate the performance of the proposed scheme. Results: The proposed algorithm was tested on both the Monte Carlo simulation and actual experiments with the Catphan504 phantom. From the simulation result, the mean square error of the reconstruction error decreases from 16% to 1.18%, the cupping (Ïcup) from 14.005% to 0.66%, and the peak signal-to-noise ratio increase from 16.9594 to 31.45. From the actual experiments, the induced visual artifacts are significantly reduced. Conclusion: We conducted an experiment on CBCT imaging system with a rotating collimator to develop and optimize x-ray scatter control and reduction technique. The proposed method is attractive in applications where a high CBCT image quality is critical, for example, dose calculation in adaptive radiation therapy. We want to thank
Active radar calibrators are used to derive both the amplitude and phase characteristics of a multichannel polarimetric SAR from the complex image data. Results are presented from an experiment carried out using the NASA/JPL DC-8 aircraft SAR over a calibration site at Goldstone, California. As part of the experiment, polarimetric active radar calibrators (PARCs) with adjustable polarization signatures were deployed. Experimental results demonstrate that the PARCs can be used to calibrate polarimetric SAR images successfully. Restrictions on the application of the PARC calibration procedure are discussed.
An increase in the number of patients visiting emergency departments (EDs) presents an opportunity for additional revenue if hospitals take four steps to optimize resources: Streamline the patient pathway and reduce the amount of time each patient occupies a bed in the ED. Schedule staff according to the busy and light times for patient arrivals. Perform registration and triage bedside, reducing initial wait times. Create an area for patients to wait for test results so beds can be freed up for new arrivals.
Hashemi, SayedMasoud; Song, William Y.; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G.; Ruschin, Mark
van Haaren, Paul; Claassen-Janssen, Fiere; van de Sande, Ingrid; Boersma, Liesbeth; van der Sangen, Maurice; Hurkmans, Coen
The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples--definitions, nomenclature and strategies: state of the art.
Older, chronically ill patients with limited health literacy are often under-engaged in managing their health and turn to the emergency department (ED) for healthcare needs. We tested the impact of an ED-initiated coaching intervention on patient engagement and follow-up doctor visits in this high-risk population. We also explored patients' care-seeking decisions. We conducted a mixed-methods study including a randomized controlled trial and in-depth interviews in two EDs in northern Florida. Participants were chronically ill older ED patients with limited health literacy and Medicare as a payer source. Patients were assigned to an evidence-based coaching intervention (n= 35) or usual post-ED care (n= 34). Qualitative interviews (n=9) explored patients' reasons for ED use. We assessed average between-group differences in patient engagement over time with the Patient Activation Measure (PAM) tool, using logistic regression and a difference-in-difference approach. Between-group differences in follow-up doctor visits were determined. We analyzed qualitative data using open coding and thematic analysis. PAM scores fell in both groups after the ED visit but fell significantly more in "usual care" (average decline -4.64) than "intervention" participants (average decline -2.77) (β=1.87, p=0.043). There were no between-group differences in doctor visits. Patients described well-informed reasons for ED visits including onset and severity of symptoms, lack of timely provider access, and immediate and comprehensive ED care. The coaching intervention significantly reduced declines in patient engagement observed after usual post-ED care. Patients reported well-informed reasons for ED use and will likely continue to make ED visits unless strategies, such as ED-initiated coaching, are implemented to help vulnerable patients better manage their health and healthcare.