BD MICRO-FINE+ Insulinspr.0,5 ml U100 8 mm - 100x0.5
Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda TJG (1996b) Cloning of the rice seed α-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C (2018) Rice functional genomics research: past decade and future. Mol Plant 11:359–380
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Critical reviews in food science nutrition 57(11):2455–2481
Notice: Your complete company data is required for purchasing chemicals. All new or additionally added addresses are initially examined by order processing. Please note that country-specific export restrictions may apply to some products.
Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623
Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw JL, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnarubal E, Toojinda T (2018) Thai Hom Mali Rice: origin and breeding for subsistence rainfed lowland rice system. Rice 11:20
Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694
Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet 93:1145–1151
Gravois KA (1994) Diallel analysis of head rice percentage, total milled rice percentage, and rough rice yield. Crop Sci 34:42–45
Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C (2016) Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Sci Plant Nutr 62:327–339
All prices do not include VAT, and possibly shipping costs and/or applicable fees. Prices may deviate for certain countries, product lines, and hazardous materials classes.
Shi W, Yang Y, Chen S, Xu M (2008a) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breeding 22:185–192
Shi C, Zhu J (1998) Genetic analysis of cytoplasmic and maternal effects for milling quality traits in indica rice. Seed Sci Technol 26:581–488
Urisu A, Yamada K, Masuda S, Komada H, Wada E, Kondo Y, Horiba F, Tsuruta M, Yasaki T, Yamada M (1991) 16-kilodalton rice protein is one of the major allergens in rice grain extract and responsible for cross-allergenicity between cereal grains in the Poaceae family. Int Archives of Allergy Immun 96:244–252
Shi J, Cao Y, Fan X, Li M, Wang Y, Ming F (2012) A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breeding 29:743–757
Lin D-G, Chou S-Y, Wang AZ, Wang Y-W, Kuo S-M, Lai C-C, Chen L-J, Wang C-S (2014) A proteomic study of rice cultivar TNG67 and its high aroma mutant SA0420. Plant Sci 214:20–28
Ryoo N, Yu C, Park C-S, Baik M-Y, Park IM, Cho M-H, Bhoo SH, An G, Hahn T-R, Jeon J-S (2007a) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083–1095
Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A (2003) Duplicated coding sequence in the waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Sci 165:1193–1199
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851
Sater HM, Pinson SR, Moldenhauer KA, Siebenmorgen TJ, Mason RE, Boyett VA, Edwards JD (2017) Fine mapping of qFIS1-2, a major QTL for kernel fissure resistance in rice. Crop Sci 57:1511–1521
Elite Tissue Paper is available in a variety of popular colors. These tissue papers are acid free, and ph neutral. They are 100% recyclable, ...
Gayen D, Ali N, Ganguly M, Paul S, Datta K, Datta SK (2014) RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell, Tissue Organ Culture 118:229–243
Bi-Mart offers a broad selection of quality, name-brand products at everyday low prices. Shop our department categories online or come visit one of our ...
Reyes AR, Bonin CP, Houmard NM, Huang S, Malvar TM (2009) Genetic manipulation of lysine catabolism in maize kernels. Plant Mol Biol 69:81–89
Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T (2015) The birth of a black rice gene and its local spread by introgression. Plant Cell 27:2401–2414
Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F (2011) Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol 52:2190–2199
Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287
6 Jun 2021 — ETommens eTM-xxxxP Series ... The eTommens eTM-xxxxP series are 1 channel switch-mode programmable DC power supplies with both USB/serial and ...
Mills EC, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Critical Rev Food Sci Nutr 44:379–407
Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767
Ogo Y, Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F (2014) Generation of transgenic rice with reduced content of major and novel high molecular weight allergens. Rice 7:19
Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019
Long X, Liu Q, Chan M, Wang Q, Sun SS (2013) Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol J 11:490–501
Sudha V, Spiegelman D, Hong B, Malik V, Jones C, Wedick NM, Hu FB, Willett W, Bai MR, Ponnalagu MM (2013) Consumer acceptance and preference study (CAPS) on brown and undermilled Indian rice varieties in Chennai, India. J American College Nutr 32:50–57
Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acadf Sci 105:9931–9935
Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154:1842–1854
Bao J, Corke H, Sun M (2006) Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor ApplGenet 113:1171–1183
31479549. Brand, Kendall™. Manufacturer, Cardinal. Country of Origin, Unknown. Application, Electrode Connector. UNSPSC Code, 42143127. Features. The Kendall™ ...
Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277
Sun J-L, Nakagawa H, Karita S, Ohmiya K, Hattori T (1996) Rice embryo globulins: amino-terminal amino acid sequences, cDNA cloning and expression. Plant Cell Physiol 37:612–620
Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482
Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H (2017) Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol Plant 10:634–644
Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57
This work was supported by grants from the National Program on R&D of Transgenic Plants (2016ZX08009003-004) and earmarked fund for Agriculture Research System (CARS-01-03) in China.
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584
Please register in order to see current availabilities. You can register here if you do not yet have access to our web shop.
Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5:608
Ying J-Z, Ma M, Bai C, Huang X-H, Liu J-L, Fan Y-Y, Song X-J (2018) TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant 11:750–753
Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023
She K-C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294
Alvarez AM, Adachi T, Nakase M, Aoki N, Nakamura R, Matsuda T, Enzymology M (1995) Classification of rice allergenic protein cDNAs belonging to the α-amylase/trypsin inhibitor gene family. Biochim Biophys Acta - Protein Struct 1251:201–204
Tran N, Daygon V, Resurreccion A, Cuevas R, Corpuz H, Fitzgerald M (2011) A single nucleotide polymorphism in the waxy gene explains a significant component of gel consistency. Theor Appl Genet 123:519–525
Crofts N, Abe K, Aihara S, Itoh R, Nakamura Y, Itoh K, Fujita N (2012) Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci 193:62–69
Traore K, McClung AM, Chen M-H, Fjellstrom R (2011) Inheritance of flour paste viscosity is associated with a rice waxy gene exon 10 SNP marker. J Cereal Sci 53:37–44
Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233–4245
Bao J, Zhou X, Xu F, He Q, Park YJ (2017) Genome-wide association study of the resistant starch content in rice grains. Starch-Stärke 69:1600343
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950
Satoh R, Nakamura R, Komatsu A, Oshima M, Teshima R (2011) Proteomic analysis of known and candidate rice allergens between non-transgenic and transgenic plants. Regul Toxicol Pharmacol 59:437–444
Limpawattana M, Shewfelt R (2010) Flavor lexicon for sensory descriptive profiling of different rice types. J food Sci 75:S199–S205
Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, Gao G, Zhang Q, Luo L, Wang G (2014a) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847
Meullenet JF, Griffin V, Carson K, Davis G, Davis S, Gross J, Hankins J, Sailer E, Sitakalin C, Suwansri S (2001) Rice external preference mapping for Asian consumers living in the United States. J Sens Stud 16:73–94
About. Tommaso Settimi (*1998, Italy) is a composer and sound artist based in Graz, Austria. He studied 'Computer ...
Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE 6 K) for genomic breeding in rice. Plant Biotechnol J 12:28–37
Zhou, H., Xia, D. & He, Y. Rice grain quality—traditional traits for high quality rice and health-plus substances. Mol Breeding 40, 1 (2020). https://doi.org/10.1007/s11032-019-1080-6
Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 9:852
Yi M, Nwe KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Res 113:178–186
Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6(9):e24476
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469
Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X (2015) FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral ENDOSPERM development in rice. J Exp Bot 67:633–647
Yang Y, Guo M, Sun S, Zou Y, Yin S, Liu Y, Tang S, Gu M, Yang Z, Yan C (2019) Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun 10:1949
Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043
Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199
Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G (2016) Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.). Rice 9:4
Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J (2018) Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant 11:860–873
Pinson SR, Jia Y, Gibbons JW (2013) Three quantitative trait loci conferring resistance to kernel fissuring in rice identified by selective genotyping in two tropical japonica populations. Crop Sci 53:2434–2443
Wu Z, Ren H, McGrath SP, Wu P, Zhao F-J (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508
Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S (2019) Wxlv, the ancestral allele of rice waxy gene. Mol Plant 12:1157–1166
Jin L, Lu Y, Shao Y, Zhang G, Xiao P, Shen S, Corke H, Bao J (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164
Santos RS, Araujo Júnior AT, Pegoraro C, Oliveira AC (2017) Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification. Genetics Mol Biol 40:312–325
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447
Tan J, Baisakh N, Oliva N, Parkhi V, Rai M, Torrizo L, Datta K, Datta SK (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. Int J Food Sci Technology 40:563–569
Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell Environment 32:408–416
Liu H (2016) Checking sstem of corn in Japan and inspiration to us. North Rice 46(2):1–12 (Chinese with English abstract)
Lou J, Chen L, Yue G, Lou Q, Mei H, Xiong L, Luo L (2009) QTL mapping of grain quality traits in rice. J Cereal Sci 50:145–151
Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110:51–59
Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506
Zhou H, Wang L, Liu G, Meng X, Jing Y, Shu X, Kong X, Sun J, Yu H, Smith SM (2016a) Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci U S A 113:12844–12849
Kobayashi A, Hori K, Yamamoto T, Yano M (2018) Koshihikari: a premium short-grain rice cultivar–its expansion and breeding in Japan. Rice 11:15
Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M (2001) The purple leaf (Pl) locus of rice: the Pl w allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol 42:982–991
Ding W, Lin L, Zhang B, Xiang X, Wu J, Pan Z, Zhu S (2015) OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.). Planta 242:203–213
Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H (2017) Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10:918–929
Ayres N, McClung A, Larkin P, Bligh H, Jones C, Park W (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor Appl Genet 94(6–7):773–781
Our offer is not directed toward consumers within the meaning of Section 13 of the German Civil Code (BGB), but exclusively toward companies (Section 14 of the German Civil Code), legal entities under public law or public-law special funds. Our products – insofar as a deviating agreement has not been reached – may not be used in unprocessed form as additives for foodstuffs or animal feed, medications for humans or animals, cosmetics or for in-vivo diagnostics purposes.
Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y (2017) WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J 91:849–860
Peng C, Wang Y, Liu F, Ren Y, Zhou K, Lv J, Zheng M, Zhao S, Zhang L, Wang C (2014b) FLOURY ENDOSPERM 6 encodes a CBM 48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J 77:917–930
Kemper EL, Neto GC, Papes F, Moraes KCM, Leite A, Arruda P (1999) The role of Opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11:1981–1993
Bradbury LM, Fitzgerald TL, Henry RJ, Jin Q, Waters DL (2005) The gene for fragrance in rice. Plant Biotechnol J 3(3):363–370
Maeda H, Yamaguchi T, Omoteno M, Takarada T, Fujita K, Murata K, Iyama Y, Kojima Y, Morikawa M, Ozaki H (2014) Genetic dissection of black grain rice by the development of a near isogenic line. Breeding Sci 64:134–141
Kawakatsu T, Takaiwa F (2010) Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell physiol 51:1964–1974
Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breeding 12:335–339
Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465
Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286
Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530
Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861
Sato H, Suzuki Y, Sakai M, Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breeding Sci 52:131–135
Zhao D-S, Li Q-F, Zhang C-Q, Zhang C, Yang Q-Q, Pan L-X, Ren X-Y, Lu J, Gu M-H, Liu Q-Q (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240
Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109:19166–19171
Kwak HS, Kim M, Lee Y, Jeong Y (2015) Identification of key sensory attributes for consumer acceptance and instrumental quality of aseptic-packaged cooked rice. Int J Food Sci Technol 50:691-699
Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, Mumm R, Reinke R, Dipti S, Bassinello PZ (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9(1):e85106
Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G (2017) Rational design of high-yield and superior-quality rice. Nature Plants 3:17031
Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334
Gao F, Lu X, Wang W, Sun S, Li Z, Li H, Ren G (2009) Trait-specific improvement of a cytoplasmic male-sterile line using molecular marker-assisted selection in rice. Crop Sci 49:99–106
Lyon BG, Champagne ET, Vinyard BT, Windham WR, Barton FE, Webb BD, McClung AM, Moldenhauer KA, Linscombe S, McKenzie KS (1999) Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice. Cereal Chem 76:56–62
Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227
Zhou H, Wang L, Liu G, Meng X, Jing Y, Shu X, Kong X, Sun J, Yu H, Smith SMJPotNAoS (2016b) Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice. Proc Natl Acadf Sci 113:12844–12849
Koupit Digitus spirálová hadice plast, PET černá flexibilní (d x š x v) 5000 x 30 x 30 mm 1 ks DA-90508 u Conrad Electronic.
Lu L, Hu X, Tian S, Deng S, Zhu Z (2016) Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue. Anal Chem Acta 919:11–19
Rice grain quality is a complex trait that reflects the opinions of producers, processors, sellers and consumers in regard to production, processing, marketing and consumption of the grain. It can be roughly divided into milling quality, appearance quality, cooking and sensory quality, nutrition quality and hygiene quality. Milling quality indicates level of recovery of grain products in order of value; appearance quality is reflected in ability to attract buyers; sensory quality and nutritional quality relate to the edible characteristics, and hygiene quality relates to freedom from internal and external contamination. With improving living standards, access to food has shifted from grain to meat, milk, eggs, vegetables and fruits. The demand for food is no longer simply “enough,” but is increasingly “delicious” and “healthy.” In order to meet the needs of consumers and producers, scientists have to understand the genetic basis that determines quality in rice, and breeders and seed companies have to develop rice varieties with high yield, good quality and health benefits. This paper summarizes progress in understanding rice quality by addressing aspects of consumer demand, classification and importance, functional genomics, genetics, breeding and, finally, future challenges.
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800
Shi W, Yang Y, Chen S, Xu MJMB (2008b) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol breeding 22:185–192
Qi P, Lin Y-S, Song X-J, Shen J-B, Huang W, Shan J-X, Zhu M-Z, Jiang L, Gao J-P, Lin H-X (2012) The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res 22:1666
Son J-S, Do VB, Kim K-O, Cho MS, Suwonsichon T, Valentin D (2013) Consumers’ attitude towards rice cooking processes in Korea, Japan, Thailand and France. Food quality Preference 29:(1):65–75
Policy after Polls : Israel at War – Jerusalem Studio 891. October 16 ... 28min. TV7 Israel: Watchmen Talk – former IDF Dep. Chief, Amb &Minister Maj.Gen.
Singh V, Singh AK, Mohapatra T, Ellur RK (2018) Pusa Basmati 1121–a rice variety with exceptional kernel elongation and volume expansion after cooking. Rice 11:19
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171
Ryoo N, Yu C, Park C-S, Baik M-Y, Park IM, Cho M-H, Bhoo SH, An G, Hahn T-R, J-SJPcr J (2007b) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083–1095
Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a fedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506
Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, Peng B, Wu B, Li Y, Zhao D (2018) Genetic basis of variation in rice seed storage protein (albumin, globulin, prolamin, and glutelin) content revealed by genome-wide association analysis. Front Plant Sci 9:612
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, B-i S, Onishi A (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707
Lee S, Kim Y-S, Jeon US, Kim Y-K, Schjoerring JK, An G (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Molecules Cells 33:269–275
Xu J-H, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Applied Gen 119:1397
Ecommerce industri/perusahaan (PT): Model Number 407672, Unit 1pc, Color Grey, Halogen Free Yes, Label Space/Information Surface Yes, Mounting Method DIN ...
Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949
JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
Products in the web shop are checked regularly in regard to price, availability, classification, and specification and kept up to date as best as possible. Changes may occur between updates. Subject to sale.
Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q (2018) GL3. 3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant 11:754–756
White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84
Son J-S, Do VB, Kim K-O, Cho MS, Suwonsichon T, Valentin D (2014) Understanding the effect of culture on food representations using word associations: the case of “rice” and good rice. Food Quality Preference 31:38–48
Zhou H, Yun P, He Y (2019) Rice appearance quality. In: Bao J (ed) Rice: chemistry and technology. Elsevier & AACCI, pp 371–383
Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H, Suzuki Y, Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116:979–989
This organization is not BBB accredited. New Auto Parts in Mentor, OH. See BBB rating, reviews, complaints, & more.
Ricoh Aficio SP 3510DN Black Toner Cartridges ... SP3500XA High Yield Print Cartridge; Yield: 6,400 pages.. Status. In Stock. Free Shipping. $120.99.
Teng B, Zeng R, Wang Y, Liu Z, Zhang Z, Zhu H, Ding X, Li W, Zhang G (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breeding 30:583–595
Liu Q-Q, Li Q-F, Cai X-L, Wang H-M, Tang S-Z, Yu H-X, Wang Z-Y, Gu M-H (2006) Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Sci 46:2354–2360
Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199
Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996a) Cloning of the rice seed α-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226
Yang Q-Q, Zhao D-S, Zhang C-Q, Wu H-Y, Li Q-F, Gu M-H, Sun SS-M, Liu Q-Q (2018) A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiol 176:1965–1980
Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121
Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X (2014) Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46:398
Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023
Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465